Modulhandbuch
Water Science and Engineering
(Master of Science)

SPO 2016
Wintersemester 2019/20
Stand 04.10.2019
Inhaltsverzeichnis

1. Studienplan .. 7
 1.1. Ziele des Masterstudiums ... 7
 1.2. Aufbau des Masterstudiums ... 8
 1.2.1. Advanced Fundamentals (AF) ... 9
 1.2.2. Cross-Cutting Methods & Competencies (CC) ... 10
 1.2.3. Profilstudium (P) ... 12
 1.2.4. Study Project .. 17
 1.2.5. Master’s Thesis/Masterarbeit .. 17
 1.2.6. Überfachliche Qualifikationen ... 17
 1.2.7. Zusatzeleistungen ... 17

 1.3. Modulwahl, persönlicher Studienplan & Mentoring ... 18
 1.4. Erfolgskontrollen: Prüfungen und Studienleistungen .. 18
 1.4.7. Anmeldung ... 18
 1.4.7. Abmeldung .. 18
 1.4.7. Wiederholung ... 19

 1.5. Anerkennung von Leistungen .. 19
 1.5.7. Anerkennung bereits erbrachter Leistungen ... 19
 1.5.7. Anerkennung außerhalb des Hochschulsystems erbrachter Leistungen .. 19

 1.6. Besondere Lebenslagen ... 19
 1.6.7. Studierende mit Behinderung oder chronischer Erkrankung .. 19
 1.6.7. Mutterschutz, Elternzeit und Familienpflichten .. 19

2. Ansprechpartner ... 21

3. Aktuelle Änderungen .. 22

4. Module .. 23
 4.2. Fundamentals of Water Quality [WSEM-AF201] - M-CIWVT-103438 ... 24
 4.15. Integrated Infrastructure Planning [WSEM-CC791] - M-BGU-103380 .. 48
 4.25. Language Skills 1 (2 CP) [WSEM-CC949] - M-BGU-103466 .. 65
 4.27. Membrane Technologies and Excursions [WSEM-PA222] - M-CIWVT-103413 68
5. Teilleistungen

5.1. Advanced Fluid Mechanics - T-BGU-106612 .. 131
5.2. Allgemeine Meteorologie - T-PHYS-101091 ... 132
5.3. Altlasten - Untersuchung, Bewertung und Sanierung - T-BGU-100089 133
5.4. Analysis of Turbulent Flows - T-BGU-103561 .. 134
5.5. Applied Ecology and Water Quality - T-BGU-109956 135
5.6. Biofilm Systems - T-CIWVT-106835 ... 136
5.7. Booklet Integrated Infrastructure Planning - T-BGU-106763 137
5.8. Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen - T-BGU-101681
5.9. Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung - T-BGU-103541
5.10. Energiewasserbau - T-BGU-100139 ... 140
5.11. Environmental Biotechnology - T-CIWVT-106835 .. 141
5.13. Erdbau und Erddammnbau - T-BGU-106792 ... 143
5.14. Examination on Meteorological Hazards - T-PHYS-109979 145
5.15. Examination on Seminar IPCC Assessment Report - T-PHYS-107713 146
5.16. Examination on Turbulent Diffusion - T-PHYS-109981 147
5.18. Experiments in Fluid Mechanics - T-BGU-106760 .. 149
5.19. Field Training Water Quality - T-BGU-109957 .. 150
5.20. Flow and Sediment Dynamics in Rivers - T-BGU-108467 .. 151
5.22. Fluss- und Auenökologie - T-BGU-106777 .. 153
5.23. Fundamentals of Numerical Algorithms for Engineers - T-BGU-109953 .. 154
5.25. Geodateninfrastrukturen und Web-Dienste - T-BGU-101756 .. 156
5.27. Geostatistics - T-BGU-106605 .. 158
5.28. Gewässerlandschaften - T-BGU-106789 .. 159
5.29. Groundwater Flow around Structures - T-BGU-106774 .. 160
5.30. Groundwater Hydraulics - T-BGU-100624 .. 161
5.31. Homework 'Introduction to Environmental Data Analysis and Statistical Learning' - T-BGU-109950 .. 163
5.32. Hydraulic Engineering - T-BGU-106759 .. 164
5.33. Hydrogeologie: Gelände- und Labormethoden - T-BGU-104834 ... 165
5.34. Hydrogeologie: Grundwassermodellierung - T-BGU-104757 .. 166
5.35. Hydrogeologie: Karst und Isotope - T-BGU-104758 .. 167
5.36. Hydrogeology - T-BGU-106801 .. 168
5.37. Hydrological Measurements in Environmental Systems - T-BGU-106599 ... 169
5.38. Industrial Water Management - T-BGU-108448 .. 170
5.39. Instrumentelle Analytik - T-CIWVT-106837 .. 171
5.40. Integrated Infrastructure Planning - T-BGU-106764 ... 172
5.41. Interaction Flow - Hydraulic Structures - T-BGU-110404 .. 173
5.42. Introduction to Environmental Data Analysis and Statistical Learning - T-BGU-109949 174
5.43. Introduction to Matlab - T-BGU-106765 .. 175
5.44. Lab report "Industrial Water Management" - T-BGU-109980 ... 176
5.45. Management of Water Resources and River Basins - T-BGU-106597 ... 177
5.46. Mass Transfer and Reaction Kinetics - T-CIWVT-109913 ... 178
5.47. Masterarbeit - T-BGU-100093 .. 179
5.48. Masterarbeit - T-BGU-110134 .. 180
5.49. Membrane Technologies and Excursions - T-CIWVT-106819 .. 181
5.50. Meteorological Hazards - T-PHYS-109140 .. 182
5.51. Microbiology for Engineers - T-CIWVT-106834 ... 183
5.52. Mikrobielle Diversität - T-CHEMBIO-108674 .. 184
5.53. Modeling of Water and Environmental Systems - T-BGU-106757 .. 185
5.54. Numerical Fluid Mechanics - T-BGU-106758 .. 186
5.56. Numerical Groundwater Modeling - T-BGU-100625 .. 188
5.57. Numerische Mathematik für die Fachrichtung Informatik - T-MATH-102242 ... 190
5.58. Numerische Strömungsmodellierung im Wasserbau - T-BGU-106776 ... 191
5.59. Ökosystemmanagement - T-BGU-106778 .. 192
5.60. Organic Trace Analysis of Aqueous Samples - T-CIWVT-106836 ... 193
5.61. Parallel Programming Techniques for Engineering - T-BGU-106769 .. 194
5.62. Platzhalter 1 Language Skills 1 - T-BGU-106884 .. 195
5.63. Platzhalter 2 Language Skills 1 ub - T-BGU-106885 .. 196
5.64. Practical Course in Water Technology - T-CIWVT-106840 ... 197
5.65. Prerequisite Protection and Use of Riverine Systems - T-BGU-106790 .. 198
5.66. Probability and Statistics - T-MATH-106784 .. 199
5.67. Project Report Water Distribution Systems - T-BGU-108485 ... 200
5.68. Projektstudium: Wasserwirtschaftliche Planungen - T-BGU-106783 .. 201
5.69. Protection and Use of Riverine Systems - T-BGU-106791 ... 202
5.70. Prüfungsvorleistung Gewässerlandschaften - T-BGU-106788 ... 203
5.71. Prüfungsvorleistung Umweltkommunikation - T-BGU-106620 ... 204
5.72. Remote Sensing and Positioning - T-BGU-106843 ... 205
5.73. River Basin Modelling - T-BGU-106603 .. 206
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Modulname</th>
<th>Modulnummer</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.74</td>
<td>Seminar Paper 'Flow Behavior of Rivers' - T-BGU-108466</td>
<td></td>
<td>207</td>
</tr>
<tr>
<td>5.75</td>
<td>Studienarbeit "Verkehrswasserbau" - T-BGU-106779</td>
<td></td>
<td>208</td>
</tr>
<tr>
<td>5.76</td>
<td>Study Project - T-BGU-106839</td>
<td></td>
<td>209</td>
</tr>
<tr>
<td>5.77</td>
<td>Technische Hydraulik - T-BGU-106770</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>5.78</td>
<td>Term Paper 'International Sanitary Engineering' - T-BGU-109265</td>
<td></td>
<td>211</td>
</tr>
<tr>
<td>5.79</td>
<td>Thermal Use of Groundwater - T-BGU-106803</td>
<td></td>
<td>212</td>
</tr>
<tr>
<td>5.80</td>
<td>Transport and Transformation of Contaminants in Hydrological Systems - T-BGU-106598</td>
<td></td>
<td>213</td>
</tr>
<tr>
<td>5.81</td>
<td>Turbulent Diffusion - T-PHYS-108610</td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>5.82</td>
<td>Übertagedeponien - T-BGU-100084</td>
<td></td>
<td>215</td>
</tr>
<tr>
<td>5.83</td>
<td>Umweltkommunikation - T-BGU-101676</td>
<td></td>
<td>216</td>
</tr>
<tr>
<td>5.84</td>
<td>Urban Water Infrastructure and Management - T-BGU-106600</td>
<td></td>
<td>217</td>
</tr>
<tr>
<td>5.85</td>
<td>Verkehrswasserbau - T-BGU-106780</td>
<td></td>
<td>218</td>
</tr>
<tr>
<td>5.86</td>
<td>Wasserbauliches Versuchswesen II - T-BGU-106773</td>
<td></td>
<td>219</td>
</tr>
<tr>
<td>5.87</td>
<td>Wastewater and Storm Water Treatment Facilities - T-BGU-109934</td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>5.88</td>
<td>Wastewater Treatment Technologies - T-BGU-109948</td>
<td></td>
<td>221</td>
</tr>
<tr>
<td>5.89</td>
<td>Water and Energy Cycles - T-BGU-106596</td>
<td></td>
<td>222</td>
</tr>
<tr>
<td>5.90</td>
<td>Water Distribution Systems - T-BGU-108486</td>
<td></td>
<td>223</td>
</tr>
<tr>
<td>5.91</td>
<td>Water Technology - T-CIWVT-106802</td>
<td></td>
<td>224</td>
</tr>
</tbody>
</table>

6. Anhang: Modellstudienpläne ... 225
Herausgeber:
Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Karlsruher Institut für Technologie (KIT)
76128 Karlsruhe

Fotografien:
1. Harald Horn 2. Bettina Waibel 3. IWG- Hydrologie

Ansprechpartner:
jan.wienhoefer@kit.edu
1 Studienplan

Das Modulhandbuch ist das maßgebliche Dokument, in dem die inhaltliche Struktur des Studiengangs dargestellt ist, und hilft somit bei der Orientierung im Studium. Es beschreibt die zum Studiengang gehörenden Fächer und Module und stellt so die notwendigen Informationen bereit, damit die Studierenden ihr interdisziplinäres Studium sowohl inhaltlich als auch zeitlich auf die persönlichen Bedürfnisse, Interessen und beruflichen Perspektiven zuschneiden können.

Im Studienplan (Kap. 1) werden allgemeine Regelungen aus der Studien- und Prüfungsordnung (SPO) sowie die Struktur des Studiengangs spezifiziert, beispielsweise sind hier die Zuordnungen einzelner Module zu den Pflicht- und Wahlpflichtfächern aufgeführt. Auf der Webseite http://www.sle.kit.edu/imstudium/master-water-science-engineering.php sind die aktuelle Studien- und Prüfungsordnung (SPO) und ggfs. Änderungssatzungen dazu zu finden.

Die zweite zentrale Funktion des Modulhandbuchs ist die Zusammenstellung der Modulbeschreibungen (Kap. 4), in denen auch weitere Informationen über Voraussetzungen und Empfehlungen für einzelne Module gegeben werden. Die Einzelheiten zu den Erfolgskontrollen sind bei den sogenannten "Teilleistungen" (Kap. 5) beschrieben. Dort sind dann auch Links zu den Lehrveranstaltungen im online Vorlesungsverzeichnis (VVZ), die zum Ablegen der Erfolgskontrollen besucht werden sollten.

1.1 Ziele des Masterstudiums

Lehrangebot und die Zusammenarbeit in internationalen Studierenden-Teams können Absolventen und Absolventinnen ihre Ergebnisse auch im internationalen Kontext kommunizieren.

1.2 Aufbau des Masterstudiums

Das Masterstudium Water Science & Engineering umfasst 120 Leistungspunkte (LP) und ist in die Fächer

- Advanced Fundamentals, AF (27 LP), Pflichtfach
- Cross-Cutting Methods & Competencies, CC (12 LP), Pflichtfach
- Profilstudium, P (36 LP), Wahlpflichtfach

PA Water Technologies & Urban Water Cycle
PB Fluid Mechanics & Hydraulic Engineering
PC Environmental System Dynamics & Management
PD Water Resources Engineering

- Study Project, SP (15 LP), Pflichtfach

sowie die Anfertigung einer Masterarbeit im Umfang von 30 LP gegliedert (Abbildung 1).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertiefungsstudium</td>
<td>Study Project</td>
<td>Masterarbeit</td>
<td></td>
</tr>
<tr>
<td>Module im Fach</td>
<td>Module im Fach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Fundamentals:</td>
<td>Cross-Cutting Methods and Competencies:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modeling of Water and Environmental Systems;</td>
<td>wählbar aus gelistetem Angebot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zudem sind 4 aus den 7 Modulen zu wählen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profilstudium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module wählbar aus gelistetem Angebot im gewählten Profil:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Technologies & Urban Water Cycle (A)</td>
<td>Fluid Mechanics & Hydraulic Engineering (B)</td>
<td>Environmental System Dynamics & Management (C)</td>
<td>Water Resources Engineering (D)</td>
</tr>
<tr>
<td>frei wählbar aus Gesamtangebot des Studiengangs:</td>
<td>frei wählbar aus dem Gesamtangebot des KIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fachwissenschaftliche Module</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 1: Struktur des Masterstudiums Water Science & Engineering.
1.2.1 Advanced Fundamentals (AF)

- für Profil A: AF201 und AF301
- für Profil B: AF401, AF501 und AF601
- für Profil C: AF701 und AF801

Tabelle 1: Module AF – Advanced Fundamentals

<table>
<thead>
<tr>
<th>Modul Code</th>
<th>Bezeichnung (Sprache)</th>
<th>Bezeichnung (Sprache) Art SWS</th>
<th>Art</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(WSEM-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF101</td>
<td>Modeling of Water and Environmental Systems (E) V 2</td>
<td>SL 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF201</td>
<td>Fundamentals of Water Quality (E) V/Ü 3</td>
<td>sP 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF301</td>
<td>Urban Water Infrastructure and Management (E) V/Ü 4</td>
<td>sP 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF401</td>
<td>Advanced Fluid Mechanics (E) V/Ü 4</td>
<td>sP 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF501</td>
<td>Numerical Fluid Mechanics (E) V/Ü 4</td>
<td>sP 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF601</td>
<td>Design of Hydraulic Structures (E) V/Ü 2</td>
<td>sP 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF701</td>
<td>Water and Energy Cycles in Hydrological Systems: Processes, Predictions and Management (E) V/Ü 4</td>
<td>mP 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF801</td>
<td>Field Methods in Hydrogeology (E) V/Ü 2</td>
<td>sP 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Pflichtmodul

Erläuterungen zu Tabelle 1:

allgemein:

<table>
<thead>
<tr>
<th>Erfolgskontrolle</th>
<th>Leistungspunkt</th>
<th>Semesterwochenstunde</th>
<th>Winter- / Sommersemester</th>
<th>Unterrichtssprache Deutsch / Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>V/Ü</td>
<td>Vorlesung</td>
<td>Vorlesung und Übung, separat oder integriert</td>
<td></td>
</tr>
<tr>
<td>sP</td>
<td>mP</td>
<td>schriftliche Prüfung</td>
<td>mündliche Prüfung</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td></td>
<td>Studienleistung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.2.2 Cross-Cutting Methods & Competencies (CC)

Tabelle 2: Module CC - Cross-Cutting Methods & Competencies (CC)

<table>
<thead>
<tr>
<th>Code</th>
<th>Bezeichnung</th>
<th>Lehrveranstaltung</th>
<th>EK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bezeichnung (Sprache)</td>
<td>Art</td>
</tr>
<tr>
<td>(WSEM-)</td>
<td></td>
<td>W</td>
<td>S</td>
</tr>
<tr>
<td>CC471:</td>
<td>Experiments in Fluid Mechanics</td>
<td>6</td>
<td>Experiments in Fluid Mechanics (E)</td>
</tr>
<tr>
<td>CC773:</td>
<td>Analysis of Spatial Data</td>
<td>6</td>
<td>Geostatistics (E)</td>
</tr>
<tr>
<td>CC774:</td>
<td>Introduction to Environmental Data Analysis and Statistical Learning ²</td>
<td>6</td>
<td>Introduction to Environmental Data Analysis and Statistical Learning (E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Field Training Water Quality (E)</td>
<td>Ü</td>
</tr>
<tr>
<td>CC921:</td>
<td>Instrumental Analysis</td>
<td>6</td>
<td>Instrumental Analysis (E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic Trace Analysis of Aqueous Samples (E)</td>
<td>P</td>
</tr>
<tr>
<td>CC922:</td>
<td>Forschungsmodul: Mikrobielle Diversität</td>
<td>8</td>
<td>Mikrobielle Diversität (D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Praktikum: Mikrobielle Diversität (D)</td>
<td>P</td>
</tr>
<tr>
<td>CC925:</td>
<td>Mass Transfer and Reaction Kinetics</td>
<td>4</td>
<td>Mass Transfer and Reaction Kinetics (E)</td>
</tr>
<tr>
<td>CC791:</td>
<td>Integrated Infrastructure Planning ¹</td>
<td>6</td>
<td>Infrastructure Planning – Socio-economic & Ecological Aspects (E)</td>
</tr>
<tr>
<td>CC792:</td>
<td>Umweltkommunikation ¹</td>
<td>6</td>
<td>Umweltkommunikation (D)</td>
</tr>
<tr>
<td>CC772:</td>
<td>Introduction to Matlab</td>
<td>3</td>
<td>Introduction to Matlab (E)</td>
</tr>
<tr>
<td>CC571:</td>
<td>Fundamentals of Numerical Algorithms for Engineers ²</td>
<td>3</td>
<td>Fundamentals of Numerical Algorithms for Engineers (E)</td>
</tr>
<tr>
<td>CC911:</td>
<td>Probability and Statistics</td>
<td>3</td>
<td>Probability and Statistics (E)</td>
</tr>
<tr>
<td>CC931:</td>
<td>Remote Sensing and Positioning</td>
<td>6</td>
<td>Terrestrial & Satellite Positioning (E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remote Sensing & Geo-Information Systems (E)</td>
<td>V/Ü</td>
</tr>
<tr>
<td>CC933:</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen</td>
<td>6</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen (D)</td>
</tr>
<tr>
<td>CC935:</td>
<td>Geodateninfrastrukturen und Web-Dienste</td>
<td>6</td>
<td>Geodateninfrastrukturen und Web-Dienste (D)</td>
</tr>
</tbody>
</table>

(Fortsetzung nächste Seite)
Tabelle 2: Module CC - Cross-Cutting Methods & Competencies (CC) (Fortsetzung)

<table>
<thead>
<tr>
<th>Modul</th>
<th>Lehrveranstaltung</th>
<th>EK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Bezeichnung</td>
<td>LP</td>
</tr>
<tr>
<td>(WSEM-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC912:</td>
<td>Numerische Mathematik für die Fachrichtungen Informatik und Ingenieurwesen</td>
<td>6</td>
</tr>
<tr>
<td>CC949:</td>
<td>Language Skills</td>
<td>6</td>
</tr>
</tbody>
</table>

Erläuterungen zu Tabelle 2:

<table>
<thead>
<tr>
<th>Art der Veranstaltung:</th>
<th>Art der Erfolgskontrolle:</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>sP</td>
</tr>
<tr>
<td>V/Ü</td>
<td>mP</td>
</tr>
<tr>
<td>V/S</td>
<td>PaA</td>
</tr>
<tr>
<td>Ü</td>
<td>SL</td>
</tr>
<tr>
<td>S</td>
<td>SL</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

1) Modul wird im Wintersemester 2019/20 weiterhin angeboten.
2) Modul wird ab Wintersemester 2019/20 neu angeboten.
1.2.3 Profilstudium (P)

Der Studiengang bietet eine Spezialisierung im Rahmen der drei Profile A - C, die sich an aktuellen Berufsbildern orientieren. Zudem ist im Profil D eine Ausbildung von Generalisten und Generalistinnen im Wasseringenieurwesen möglich. Im Profilstudium müssen 36 LP erworben werden. Davon müssen mindestens 24 LP aus dem profilspezifischen Angebot gewählt werden (Tabellen 3 - 5); dazu können "Supplementary Modules" gewählt werden.

Die Studierenden wählen zu Beginn ihres Studiums eines der vier Profile. Die Wahl erfolgt durch Online-Anmeldung zur ersten profilspezifischen Prüfung.

Profil A: Water Technologies & Urban Water Cycle (PA)

Studierende, die das Profil "Water Technologies & Urban Water Cycle" vertiefen, wählen Module im Umfang von mindestens 24 LP aus dem Modulangebot in Tabelle 3 sowie ggfs. ergänzende LPs aus den "Supplementary Modules".

<table>
<thead>
<tr>
<th>Modul</th>
<th>Lehrveranstaltung</th>
<th>EK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Bezeichnung</td>
<td>LP</td>
</tr>
<tr>
<td>(WSEM-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA221:</td>
<td>Water Technology</td>
<td>6</td>
</tr>
<tr>
<td>PA222:</td>
<td>Membrane Technologies and Excursions</td>
<td>6</td>
</tr>
<tr>
<td>PA224:</td>
<td>Biofilm Systems</td>
<td>4</td>
</tr>
<tr>
<td>PA223:</td>
<td>Practical Course in Water Technology</td>
<td>4</td>
</tr>
<tr>
<td>PA321:</td>
<td>Municipal Wastewater Treatment (E)</td>
<td>6</td>
</tr>
<tr>
<td>PA322:</td>
<td>Wastewater and Storm Water Treatment Facilities</td>
<td>6</td>
</tr>
<tr>
<td>PA323:</td>
<td>Industrial Water Management</td>
<td>6</td>
</tr>
<tr>
<td>PA621:</td>
<td>Water Distribution Systems</td>
<td>6</td>
</tr>
</tbody>
</table>

Erläuterungen zu Tabelle 3:
allgemein: Art der Veranstaltung: Art der Erfolgskontrolle:

Profil B: Fluid Mechanics & Hydraulic Engineering (PB)

Studierende, die das Profil "Fluid Mechanics & Hydraulic Engineering" vertiefen, wählen Module im Umfang von mindestens 24 LP aus dem Modulangebot in Tabelle 4 sowie ggfs. ergänzende LPs aus den "Supplementary Modules".

Tabelle 4: Module PB - Fluid Mechanics & Hydraulic Engineering

<table>
<thead>
<tr>
<th>Modul</th>
<th>Lehrveranstaltung</th>
<th>EK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bezeichnung (Sprache)</td>
<td>Art</td>
</tr>
<tr>
<td>PB421:</td>
<td>Environmental Fluid Mechanics</td>
<td>V/Ü</td>
</tr>
<tr>
<td>PB521:</td>
<td>Analysis of Turbulent Flows ¹</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Modeling of Turbulent Flows - RANS and LES (E)</td>
<td>V</td>
</tr>
<tr>
<td>PB522:</td>
<td>Advanced Computational Fluid Dynamics</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Parallel Programming Techniques for Engineering Problems (E)</td>
<td>V/Ü</td>
</tr>
<tr>
<td>PB431:</td>
<td>Technische Hydraulik</td>
<td>6</td>
</tr>
<tr>
<td>PB641:</td>
<td>Versuchswesen und Strömungsmesstechnik</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Wasserbauliches Versuchswesen II (D)</td>
<td>V/Ü</td>
</tr>
<tr>
<td>PB631:</td>
<td>Hydraulic Structures</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Interaction Flow - Hydraulic Structures (E)</td>
<td>V/Ü</td>
</tr>
<tr>
<td>PB651:</td>
<td>Numerische Strömungsmodellierung im Wasserbau</td>
<td>6</td>
</tr>
<tr>
<td>PB653:</td>
<td>Energiewasserbau</td>
<td>6</td>
</tr>
<tr>
<td>PB655:</td>
<td>Verkehrswasserbau</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB633:</td>
<td>Flow and Sediment Dynamics in Rivers</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB661:</td>
<td>Projektstudium: Wasserwirtschaftliche Planungen</td>
<td>6</td>
</tr>
</tbody>
</table>

**) Lehrveranstaltung wird im Sommersemester 2019 nicht angeboten.

Erläuterungen zu Tabelle 4:

allgemein: Erfolgskontrolle: Art der Veranstaltung: Art der Erfolgskontrolle:

<table>
<thead>
<tr>
<th>EK</th>
<th>Erfolgskontrolle</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>Leistungspunkt</td>
</tr>
<tr>
<td>SWS</td>
<td>Semesterwochenstunde</td>
</tr>
<tr>
<td>W / S</td>
<td>Winter- / Sommersemester</td>
</tr>
<tr>
<td>D / E</td>
<td>Unterrichtssprache Deutsch / Englisch</td>
</tr>
</tbody>
</table>

¹ Beginn des Moduls zum Sommersemester (S) wird empfohlen.

V Vorlesung
V/Ü Vorlesung und Übung, separat oder integriert
sP schriftliche Prüfung
mP mündliche Prüfung
PaA Projektstudium als Prüfungsvorleistung

Water Science and Engineering Master 2016 (Master of Science (M.Sc.))
Modulhandbuch mit Stand vom 04.10.2019
Profil C: Environmental System Dynamics & Management (PC)

Studierende, die das Profil "Environmental System Dynamics & Management (PC)" vertiefen, wählen Module im Umfang von mindestens 24 LP aus dem Modulangebot in Tabelle 5 sowie ggfs. ergänzende LPs aus den "Supplementary Modules".

Tabelle 5: Module PC - Environmental System Dynamics & Management

<table>
<thead>
<tr>
<th>Modul</th>
<th>Lehrveranstaltung</th>
<th>EK</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC721: Management of Water Resources and River Basins</td>
<td>6 Management of Water Resources and River Basins (E)</td>
<td>W 4 PaA 6</td>
</tr>
<tr>
<td>PC725: Subsurface Flow and Contaminant Transport</td>
<td>6 Transport and Transformation of Contaminants in Hydrological Systems (E)</td>
<td>V/Ü 4 mP 6</td>
</tr>
<tr>
<td>PC732: Hydrological Measurements in Environmental Systems</td>
<td>6 Hydrological Measurements in Environmental Systems (E)</td>
<td>PÜ 4 PaA 6</td>
</tr>
<tr>
<td>PC341: River Basin Modeling</td>
<td>6 Mass Fluxes in River Basins (E)</td>
<td>V 2 PaA 6</td>
</tr>
</tbody>
</table>

Tabelle 5: Module PC - Environmental System Dynamics & Management

<table>
<thead>
<tr>
<th>Modul</th>
<th>Lehrveranstaltung</th>
<th>EK</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC761: Gewässerlandschaften</td>
<td>6 Gewässerlandschaften (D)</td>
<td>V/S 4 SL PaA 0</td>
</tr>
<tr>
<td>PC762: Protection and Use of Riverine Systems</td>
<td>6 Protection and Use of Riverine Systems (E)</td>
<td>V/S 4 SL PaA 1</td>
</tr>
<tr>
<td>PC561: Groundwater Management</td>
<td>6 Groundwater Hydraulics (E)</td>
<td>V/Ü 2 mP 3</td>
</tr>
<tr>
<td>PC821: Hydrogeologie: Gelände- und Labormethoden</td>
<td>6 Vorbereitendes Seminar (D)</td>
<td>S 1 PaA 6</td>
</tr>
<tr>
<td>PC831: Hydrogeologie: Grundwassermodellierung</td>
<td>6 Hydrogeologie: Grundwassermodellierung (D)</td>
<td>V/Ü 4 PaA 6</td>
</tr>
<tr>
<td>PC841: Hydrogeologie: Karst und Isotope</td>
<td>6 Karsthydrogeologie (D)</td>
<td>V/Ü 2 sP 6</td>
</tr>
<tr>
<td>PC986: Management von Fluss- und Auenökosystemen</td>
<td>6 Fluss- und Auenökologie (D)</td>
<td>V 2 sP 3</td>
</tr>
</tbody>
</table>

Erläuterungen zu Tabelle 5:

allgemein:
- EK Erfolgskontrolle
- LP Leistungspunkt
- SWS Semesterwochenstunde
- W / S Winter- / Sommersemester
- D / E Unterrichtssprache Deutsch / Englisch

Art der Veranstaltung:
- V Vorlesung
- V/Ü Vorlesung und Übung
- V/S Vorlesung und Seminar integriert
- Ü Übung
- PÜ praktische Übung
- S Seminar
- PJ Projekt

Art der Erfolgskontrolle:
- sP schriftliche Prüfung
- mP mündliche Prüfung
- PaA Prüfungsleistung anderer Art
- SL Studienleistung als Prüfungsvorleistung

1) Beginn des Moduls zum Sommersemester (S) wird empfohlen.
2) Beginn des Moduls zum Wintersemester (W) wird empfohlen.
3) Modul wird ab dem Wintersemester 2019/20 nicht mehr angeboten.
Profil D: Water Resources Engineering (PD)
Dieses Profil hat als individuelle Spezialisierung den/die Generalisten/in zum Ziel. Somit erfolgt eine Auffächerung auf die drei Profile A bis C.

Supplementary Modules (SM)
Die individuelle Spezialisierung im Rahmen des Profilstudiums wird durch einen freien Wahlbereich ergänzt, mit dem das Profilstudium individuell ausgestaltet werden kann. Dazu können als Ergänzung zu den jeweiligen profilspezifischen Modulen (mindestens 24 LP) "Supplementary Modules" gewählt werden, um die 36 LP im Profilstudium zu erlangen.

Bei der Wahl der "Supplementary Modules" berät die Mentorin bzw. der Mentor. Fachlich passende Module, die nicht in den Tabellen 1 bis 6 in diesem Modulhandbuch aufgeführt sind, können ebenfalls als "Supplementary Modules" in Betracht kommen. In diesem Fall ist ein individueller Studienplan zu erstellen, der von der Mentorin bzw. vom Mentor genehmigt werden muss.

Tabelle 6: Weitere Supplementary Modules

<table>
<thead>
<tr>
<th>Modul</th>
<th>Lehrveranstaltung</th>
<th>EK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Code</td>
<td>Bezeichnung</td>
</tr>
<tr>
<td>(WSEM-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingenieurgeologie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM879: Thermal Use of Groundwater</td>
<td>6</td>
<td>Thermal Use of Groundwater (E)</td>
</tr>
<tr>
<td>Geotechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM961: Erdbau und Erddambau</td>
<td>6</td>
<td>Grundlagen des Erd- und Dambaus (D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Erddambau (D)</td>
</tr>
<tr>
<td>SM962: Umweltgeotechnik</td>
<td>6</td>
<td>Übertagedeponien (D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Altlasten - Untersuchung, Bewertung und Sanierung (D)</td>
</tr>
<tr>
<td>Meteorologie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM971: Allgemeine Meteorologie</td>
<td>6</td>
<td>Allgemeine Meteorologie (D)</td>
</tr>
<tr>
<td>SM972: Meteorologische Naturgefahren und Klimawandel</td>
<td>6</td>
<td>Meteorologische Naturgefahren** (E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seminar on IPCC Assessment Report (E)</td>
</tr>
<tr>
<td>SM973: Angewandte Meteorologie: Turbulente Ausbreitung</td>
<td>6</td>
<td>Turbulent Diffusion (E)</td>
</tr>
</tbody>
</table>

**) Lehrveranstaltung wird im Sommersemester 2019 nicht angeboten.
Erläuterungen zu Tabelle 6:

<table>
<thead>
<tr>
<th>allgemein</th>
<th>Art der Veranstaltung</th>
<th>Art der Erfolgskontrolle</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Erfolgskontrolle</td>
<td>mP</td>
</tr>
<tr>
<td>LP</td>
<td>Leistungspunkt</td>
<td>PaA</td>
</tr>
<tr>
<td>SWS</td>
<td>Semesterwochenstunde</td>
<td>S</td>
</tr>
<tr>
<td>W / S</td>
<td>Winter- / Sommersemester</td>
<td>V / Ü</td>
</tr>
<tr>
<td>D / E</td>
<td>Unterrichtssprache Deutsch / Englisch</td>
<td>V</td>
</tr>
<tr>
<td>1)</td>
<td>Beginn des Moduls zum Sommersemester (S) wird empfohlen.</td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td>Beginn des Moduls zum Wintersemester (W) wird empfohlen.</td>
<td></td>
</tr>
</tbody>
</table>
1.2.4 Study Project

Es ist unbedingt empfehlenswert, die notwendigen fachlichen und überfachlichen Kompetenzen zur Bearbeitung des "Study Project" bereits vor dessen Beginn erworben zu haben.

1.2.5 Master's Thesis/Masterarbeit

1.2.6 Überfachliche Qualifikationen

Die Vermittlung von überfachlichen Qualifikationen findet integrativ im Rahmen der fachwissenschaftlichen Module, insbesondere im Fach "Cross-Cutting Methods & Competencies" sowie im "Study Project" statt.

1.2.7 Zusatzleistungen

Eine Zusatzleistung muss als solche vom Studiengangservice Bau-Geo-Umwelt mit dem dort erhältlichen Prüfungszettel zugelassen werden. Sie kann nachträglich nicht als Pflicht- oder Wahlpflichtleistung verbucht werden.
werden. Der Prüfungszettel ist als Anmeldung und zur Übermittlung der Note dem/der Prüfer/in innerhalb der Anmeldefrist auszuhändigen.

1.3 Modulwahl, persönlicher Studienplan & Mentoring

1.4 Erfolgskontrollen: Prüfungen und Studienleistungen

Der Studienerfolg wird durch Erfolgskontrollen im Rahmen von Modulprüfungen überprüft. Erfolgskontrollen gliedern sich in benotete Prüfungsleistungen und unbenotete Studienleistungen. Prüfungsleistungen können als schriftliche oder mündliche Prüfungen (sP, mP) sowie als Prüfungsleistungen anderer Art (PaA) gestaltet sein. Studienleistungen sind schriftliche, mündliche oder praktische Leistungen, die von den Studierenden in der Regel lehrveranstaltungsbegleitend erbracht werden.

1.4.1 Anmeldung

Zu den Erfolgskontrollen müssen sich die Studierenden online im Studierendenportal anmelden. Für die Anmeldung zu Erfolgskontrollen können durch die Prüfenden Voraussetzungen und Fristen festgelegt sein. Sofern Wahlmöglichkeiten bestehen geben die Studierenden mit der Anmeldung zur Erfolgskontrolle eine Erklärung über die Zuordnung des betreffenden Moduls zu einem Fach ab. Im Falle einer mündlichen Prüfung ist die online Anmeldung in direktem Zusammenhang mit der Vereinbarung eines Prüfungstermins beim Prüfer bzw. bei der Prüferin vorzunehmen.

Eine erfolgreiche online Anmeldung beinhaltet die Zulassung zur Prüfung. Eine Bestätigung dafür wird über das Studierendenportal zur Verfügung gestellt und kann in Zweifelsfällen als Nachweis für eine erfolgte Anmeldung dienen. Sollte beim Versuch einer online Anmeldung ein Problem auftreten, ist neben dem/der Prüfer/in möglichst umgehend der Studiengangservice Bau-Geo-Umwelt zu informieren.

Eine angemeldete Prüfung ist entweder abzulegen oder es muss vor Ablauf der Abmeldefrist eine Abmeldung erfolgen.

1.4.2 Abmeldung

Eine Abmeldung von Prüfungsleistungen anderer Art sowie von Studienleistungen ist bis zur Erbringung der jeweiligen Leistung oder der ersten Teilleistung möglich. Als Erbringung gilt beispielsweise die Abgabe einer schriftlichen Arbeit (Bericht, Hausarbeit o.ä.) oder der Beginn einer mündlichen Prüfungsleistung (Präsentation, Kolloquium o.ä.). Sofern Abgabetermine festgelegt sind, kann eine Abmeldung nur vorher erfolgen.

Eine spätere Abmeldung bzw. ein Rücktritt ist nur aus triftigem Grund möglich und mit einer unverzüglichen schriftlichen Erklärung gegenüber dem Prüfungsausschuss glaubhaft zu begründen.
1.4.3 Wiederholung
Eine nicht bestandene Prüfungsleistung (sP, mP, PaA) kann einmal in der gleichen Form wiederholt werden. Wird die Wiederholung einer schriftlichen Prüfung ebenfalls nicht bestanden, so findet eine mündliche Nachprüfung statt, bei der bestenfalls ein Ausreichend erreicht werden kann. Die Wiederholung von Prüfungsleistungen hat spätestens bis zum Ende des Prüfungszeitraumes des übernächsten Semesters zu erfolgen.
Studienleistungen können mehrmals wiederholt werden.

1.5 Anerkennung von Leistungen

1.5.1 Anrechnung bereits erbrachter Leistungen
Die Anerkennung bereits erbrachter Leistungen erfolgt mit dem entsprechenden Anerkennungsformular des Prüfungsausschusses. Sind die Leistungen deckungsgleich mit Modulen aus dem Studienplan, bestätigt dies die jeweilige Fachkollegin bzw. der jeweilige Fachkollege auf dem Formblatt.
Das Anerkennungsformular ist der Fachstudienberatung vorzulegen, welche es an den Prüfungsausschuss und den Studiengangservice Bau-Geo-Umwelt weiterleitet.

1.5.2 Anerkennung außerhalb des Hochschulsystems erbrachter Leistungen

1.6 Besondere Lebenslagen

1.6.1 Studierende mit Behinderung oder chronischer Erkrankung
Studierende mit Behinderung oder chronischer Erkrankung haben die Möglichkeit, bevorzugten Zugang zu teilnahmebegrenzten Lehrveranstaltungen zu erhalten, die Reihenfolge für das Absolvieren bestimmter Lehrveranstaltungen entsprechend ihrer Bedürfnisse anzupassen, oder Prüfungen in einzelnen Modulen unter Wahrung der fachlichen Anforderungen in individuell gestalteter Form oder Frist abzulegen (Nachteilsausgleich).
Beispiele für mögliche Nachteilsausgleiche sind:

- Erbringen von Studien- und Prüfungsleistungen in einer anderen als der vorgesehenen Form, etwa Ersatz von schriftlichen durch mündliche Leistungen und umgekehrt
- Durchführung der Prüfung in einem gesonderten Raum
- Zulassung notwendiger Hilfsmittel und Assistenzleistungen (z. B. GebärdensprachdolmetscherIn)
- Individuelle Erholungspausen bei zeitabhängigen Studien- und Prüfungsleistungen (Klausuren), die nicht auf die Bearbeitungszeit angerechnet werden
- Verlängerung der Zeiträume zwischen einzelnen Studien- und Prüfungsleistungen

1.6.2 Mutterschutz, Elternzeit und Familienpflichten
Die gesetzlich festgelegten Mutterschutzfristen unterbrechen jede Frist nach der Prüfungsordnung; die Dauer des Mutterschutzes wird nicht in die Fristen eingerechnet. Elternzeiten sowie die Wahrnehmung von Familienpflichten können ebenfalls über die flexible Handhabung von Prüfungsfristen berücksichtigt werden. In allen Fällen ist über die Fachstudienberatung in formloser Antrag mit entsprechenden Nachweisen an den Prüfungsausschuss zu stellen.
Im Fall der Elternzeit muss der oder die Studierende bis spätestens vier Wochen vor dem Zeitpunkt, von dem an die Elternzeit angetreten werden soll, dem Prüfungsausschuss schriftlich mitteilen, in welchem Zeitraum die Elternzeit in Anspruch genommen werden soll. Wenn die Voraussetzungen vorliegen, die nach der gültigen gesetzlichen
Regelung bei einer Arbeitnehmerin bzw. einem Arbeitnehmer den Anspruch auf Elternzeit auslösen würden, setzt der Prüfungsausschuss die Prüfungszeiten neu fest.

Die Bearbeitungszeit der Masterarbeit kann nicht durch Elternzeit oder durch die Wahrnehmung von Familienpflichten unterbrochen werden. Die gestellte Arbeit gilt als nicht vergeben; der/die Studierende erhält ein neues Thema.
2 Ansprechpartner

Studiendekan:
Prof. Dr. Peter Vortisch
Institut für Verkehrswesen, Geb. 10.30, Zi. 305
Sprechstunde: nach Vereinbarung
Tel.: 0721/608-42255
E-Mail: peter.vortisch@kit.edu

Fachstudienberatung/Koordination:
Dr. Jan Wienhöfer
Institut für Wasser und Gewässerentwicklung, Fachbereich Hydrologie, Geb. 10.81, Zi. 423
Sprechstunde: nach Vereinbarung
Tel.: 0721/608-41932
E-Mail: jan.wienhoefer@kit.edu

Prüfungsausschuss Master:
Prof. Dr.-Ing. Kunibert Lennerts (Vorsitzender)
Dr. Gunnar Adams (Sachbearbeiter)
Institut für Technologie und Management im Baubetrieb, Geb. 50.31, Zi. 005 (EG)
Sprechstunde: Fr. 14.00 – 15.00 Uhr
Tel.: 0721/608-46008
E-Mail: pam@bgu.kit.edu
Internet: https://www.tmb.kit.edu/PAM.php

Studiengangservice Bau-Geo-Umwelt:
Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften, Geb. 10.81, Zi. 312
E-Mail: studiengangservice@bgu.kit.edu
Internet: http://www.bgu.kit.edu/studiengangservice.php

Fachschaft:
Studierende des Bauingenieurwesens
Geb. 10.81 (Altes Bauing.Geb.), Zi. 317.1 (3. OG)
Sprechstunde: s. http://www.fs-bau.kit.edu
Telefon: 0721/608-43895
E-Mail: fsbau@lists.kit.edu
Internet: http://www.fs-bau.kit.edu
3 Aktuelle Änderungen

Im Folgenden sind die wesentlichen Änderungen ab dem Wintersemester 2019/20 zusammengestellt. Es besteht jedoch kein Anspruch auf Vollständigkeit.

nicht mehr angebotene Module ab dem Wintersemester 2019/20:
- Gewässerlandschaften [WSEM-PC761]
- Hydrogeologie: Grundwassermodellierung [WSEM-PC831]

neu angebotene Module ab dem Wintersemester 2019/20:
- Introduction to Environmental Data Analysis and Statistical Learning [WSEM-CC774]
- Fundamentals of Numerical Algorithms for Engineers [WSEM-CC571]
- Wastewater Treatment Technologies [WSEM-PA321], ersetzt Modul Process Engineering in Wastewater Treatment [WSEM-PA321]

Änderungen der den Modulen zugeordneten Lehrveranstaltungen ab dem Wintersemester 2019/20:
- Practical Course in Water Technology [WSEM-PA223]:
 Die Lehrveranstaltung Practical Course in Water Technology (22664), 2 SWS, wird ab dem Wintersemester 2019/20 im Wintersemester angeboten.
- Versuchswesen und Strömungsmesstechnik [WSEM-PB641]:
 Die Lehrveranstaltung Flow Measurement Techniques (6221907), 2 SWS, wird in Englisch angeboten.
- Hydraulic Structures [WSEM-PB631]:
 Die Lehrveranstaltung Interaction Flow - Hydraulic Structures (6221903), 2 SWS, wird in Englisch angeboten.
- Hydrogeologie: Karst und Isotope [WSEM-PC841]:
 Die Lehrveranstaltung Exkursion zur Karsthydrowogeologie (6339078), 2 SWS, entfällt.

geänderte Prüfungen und Studienleistungen in den Modulen ab dem Wintersemester 2019/20:
- Hydraulic Structures [WSEM-PB631]:
- Thermal Use of Groundwater [WSEM-SM879]:
 Für das Modul und die mündliche Prüfung werden 4 LP vergeben.
- Meteorologische Naturgefahren und Klimawandel [WSEM-SM972]:
 Für die Teilprüfung Meteorological Hazards, Studienleistung, wird 1 LP und für die Teilprüfung Examination on Meteorological Hazards, mündliche Prüfung, werden 2 LP vergeben.
- Angewandte Meteorologie: Turbulente Ausbreitung [WSEM-SM973]:
 Für die Teilprüfung Turbulent Diffusion, Studienleistung, werden 2 LP und für die Teilprüfung Examination on Turbulent Diffusion, mündliche Prüfung, werden 4 LP vergeben.
4 Module

4.1 Modul: Modeling of Water and Environmental Systems (WSEM-AF101) [M-BGU-103374]

Verantwortung:
Dr. Jan Wienhöfer

Einrichtung:
KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
Advanced Fundamentals (Pflichtmodul)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-BGU-106757 Modeling of Water and Environmental Systems | 3 LP | Wienhöfer |

Erfolgskontrolle(n)
- Teilleistung T-BGU-106757 mit unbenoteter Studienleistung nach § 4 Abs. 3

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele
Die Studierenden können Ansätze für die Modellierung von Umweltsystemen in verschiedenen wasserbezogenen Disziplinen erläutern. Auf dieser Basis können sie allgemeine Ansätze und Methoden der Umweltsystemmodellierung vergleichen und ihre jeweiligen Vor- und Nachteile sowie Anwendungsbereiche bestimmen und bewerten.

Die Studierenden können universelle Probleme der Modellierung erklären und sind in der Lage, für gegebene wasserbezogene Aufgabenstellungen adäquate Modellkonzepte auszuwählen.

Zusammensetzung der Modulnote
unbenotet

Voraussetzungen
keine

Inhalt

Empfehlungen
keine

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Vorlesung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen: 30 Std.
- Berarbeitung der aufgabenleiteten Hausarbeit: 30 Std.

Summe: 90 Std.
4.2 Modul: Fundamentals of Water Quality (WSEM-AF201) [M-CIWVT-103438]

Verantwortung: Dr. Gudrun Abbt-Braun

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von:
- Advanced Fundamentals (Wahlpflichtmodule)
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
- Profilstudium / Water Resources Engineering (Supplementary Modules)

Leistungspunkte: 6

Turnus: Jedes Wintersemester

Dauer: 1 Semester

Sprache: Englisch

Level: 4

Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106838</td>
<td>Fundamentals of Water Quality</td>
<td>6</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-CIWVT-106838 mit schriftlicher Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
Wasserarten, Wasserrecht, Grundbegriffe der wasserchemischen Analytik, Analysenqualität, Probenahme, Schnelltests, allgemeine Untersuchungen, elektrochemische Verfahren, optische Charakterisierung, Trübung, Färbung, SAK, Säure-Base-Titrationen, Abdampf-/Glührückstand, Hauptinhaltstoffe, Ionenchromatographie, Titrationen (Komplexometrie), Atomabsorptionsspektrometrie (Schwermetalle), organische Spurenstoffe und ihre analytische Bestimmung mit chromatographischen und spektroskopischen Messverfahren, Wasserspezifische summarische Kenngrößen (DOC, AOX, CSB, BSB), Radioaktivität, Mikrobiologie.

Empfehlungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung, Übung: 45 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen Vorlesungen, Übungen: 65 Std.
- Prüfungsvorbereitung: 70 Std.

Summe: 180 Std.
Literatur
Vorlesungsunterlagen im ILIAS
4.3 Modul: Urban Water Infrastructure and Management (WSEM-AF301) [M-BGU-103358]

Verantwortung: Dr.-Ing. Stephan Fuchs
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Advanced Fundamentals (Wahlpflichtmodule)
Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
Profilstudium / Water Resources Engineering (Supplementary Modules)

Leistungspunkte: 6
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 2

Pflichtbestandteile
T-BGU-106600 Urban Water Infrastructure and Management 6 LP Fuchs

Erfolgskontrolle(n)
- Teilprüfung T-BGU-106600 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zur Erfolgskontrolle siehe bei der Teilprüfung

Qualifikationssziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt

Empfehlungen
Vorkenntnisse in Siedlungswasserwirtschaft

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
 • Vorlesung/Übung: 60 Std.

Selbststudium:
 • Vor- und Nachbereitung Vorlesung/Übungen: 60 Std.
 • Prüfungsvorbereitung: 60 Std.

Summe: 90 Std.
Literatur
4.4 Modul: Advanced Fluid Mechanics (WSEM-AF401) [M-BGU-103359]

Verantwortung: Prof. Dr. Olivier Eiff

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- Advanced Fundamentals (Wahlpflichtmodule)
 - Proflistudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
 - Proflistudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
 - Proflistudium / Environmental System Dynamics & Management (Supplementary Modules)
 - Proflistudium / Water Resources Engineering (Supplementary Modules)

Leistungspunkte 6

Turnus Jedes Sommersemester

Dauer 1 Semester

Sprache Englisch

Level 4

Version 1

Pflichtbestandteile

| T-BGU-106612 | Advanced Fluid Mechanics | 6 LP | Eff |

Erfolgskontrolle(n)
- Teilleistung T-BGU-106612 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote

Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt

Empfehlungen
Vorkenntnisse in Hydromechanik, Höhere Mathematik (Analysis, Differential- und Integralrechnung, gewöhnliche und partielle Differentialgleichungen, lineare Algebra, Fourieranalyse, komplexe Zahlen)

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung/Übung: 60 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesung/Übungen: 30 Std.
- Bearbeitung von Übungsaufgaben: 30 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.
Literatur
4.5 Modul: Numerical Fluid Mechanics (WSEM-AF501) [M-BGU-103375]

Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von:
- Advanced Fundamentals (Wahlpflichtmodule)
 - Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
 - Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
 - Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
 - Profilstudium / Water Resources Engineering (Supplementary Modules)

Leistungspunkte 6
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Englisch
Level 4
Version 1

Pflichtbestandteile
<table>
<thead>
<tr>
<th>T-BGU-106758</th>
<th>Numerical Fluid Mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 LP</td>
<td>Uhlmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-106758 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
Dieses Modul vermittelt eine allgemeine Einführung zur numerischen Strömungssimulation. Es werden die mathematischen Eigenschaften der Strömungsgleichungen analysiert. Es werden die Grundlagen der numerischen Diskretisierung mittels Finite-Differenzen Methode und Finite-Volumen Methode erarbeitet. Das Konzept der numerischen Stabilität wird eingeführt und verschiedene Techniken der Fehleranalyse werden sowohl theoretisch hergeleitet als auch an Beispielen verdeutlicht.

Empfehlungen
Vorkenntnisse in Hydromechanik (Verständnis der physikalischen Prozesse der Advektion und Diffusion, Umgang mit den Navier-Stokes Gleichungen)
Höhere Mathematik (Analysis - partielle Differentialgleichungen, Fourieranalyse, Reihenentwicklungen, komplexe Zahlen; lineare Algebra - Matrizen, Determinanten, Eigenwertanalyse; Numerik - Zahlendarstellung, Rundungsfehler, Gleitpunktberechnung, numerische Behandlung von partiellen Differentialgleichungen)
Vorkenntnisse in der Programmierung mit Matlab; ansonsten wird dringend empfohlen, am Kurs „Introduction to Matlab (CC772)” teilzunehmen.

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung, Übung: 60 Std.
Selbststudium:
- Vor- und Nachbereitung Vorlesungen, Übungen: 60 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.
Modul: Hydraulic Engineering (WSEM-AF601) [M-BGU-103376]

Verantwortung: Prof. Dr. Franz Nestmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von:
- Advanced Fundamentals (Wahlpflichtmodule)
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
- Profilstudium / Water Resources Engineering (Supplementary Modules)

Leistungspunkte: 6
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile
T-BGU-106759 Hydraulic Engineering

Erfolgskontrolle(n):
- Teilleistung T-BGU-106759 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt

Empfehlungen
keine

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Multiphase Flow in Hydraulic Engineering Vorlesung/Übung: 30 Std.
- Design of Hydraulic Structures Vorlesung/Übung: 30 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesung/Übungen Multiphase Flow in Hydraulic Engineering: 30 Std.
- Vor- und Nachbereitung Vorlesung/Übungen Design of Hydraulic Structures: 30 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.
4.7 Modul: Water and Energy Cycles (WSEM-AF701) [M-BGU-103360]

Verantwortung: Prof. Dr.-Ing. Erwin Zehe
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Advanced Fundamentals (Wahlpflichtmodule)
Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
Profilstudium / Water Resources Engineering (Supplementary Modules)

Leistungspunkte 6
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Englisch
Level 4
Version 1

Pflichtbestandteile
T-BGU-106596 Water and Energy Cycles 6 LP Zehe

Erfolgskontrolle(n)
- Teilleistung T-BGU-106596 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele
Die Studierenden können die wesentlichen Prozesse des terrestrischen Wasser- und Energiekreislaufs inklusive ihrer zentralen Rückkopplungen und Limitierungen erklären. Sie sind mit den Konzepten zur quantitativen Beschreibung und Prognose dieser Prozesse für Wissenschaft und Management vertraut und können sie für einfache Aufgabenstellungen selbständig in Form rechnergestützter Simulations- und Analysewerkzeuge umsetzen. Die Studierenden können die dafür notwendigen Datengrundlagen beurteilen und die Unsicherheiten darauf aufbauender Prognosen quantifizieren und bewerten.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
Dieses Modul vertieft Grundlagen des Wasser- und Energiekreislaufs insbesondere im Hinblick auf:

- den Boden als zentrales Steuerelement im Wasser- und Energiekreislauf und das Zusammenspiel von Bodenwasser- und Bodenwärmehaushalt
- die Verdunstung, Energiebilanz und Prozesse in der atmosphärischen Grenzschicht
- die Abfluss- und Verdunstungsregime in unterschiedlichen Hydroklimaten
- Wasserhaushalt und Hochwassergeschehen auf der Einzugsgebietsskala und entsprechende wasserwirtschaftliche Kenngrößen
- Konzepte für hydrologische Ähnlichkeit und vergleichende Hydrologie
- prozessbasierte und konzeptionelle Modelle zur Prognose von Hochwasser, Wasserhaushalt und Verdunstung

Empfehlungen
Vorkenntnisse in der Programmierung mit Matlab; ansonsten wird dringend empfohlen, an dem Kurs "Introduction to Matlab (6224907)" teilzunehmen; Vorkenntnisse in Hydrologie und Ingenieurhydrologie

Anmerkungen
keine
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

• Vorlesung/Übung: 60 Std.

Selbststudium:

• Vor- und Nachbereitung Vorlesung/Übungen, inklusive Bearbeitung freiwilliger Hausaufgaben: 60 Std.
• Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.

Literatur
Verantwortung: Prof. Dr. Nico Goldscheider
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Advanced Fundamentals (Wahlpflichtmodule)
Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
Profilstudium / Water Resources Engineering (Supplementary Modules)

Leistungspunkte Turnus Dauer Sprache Level Version
6 Jedes Wintersemester 2 Semester Englisch 4 1

Pflichtbestandteile
T-BGU-106801 Hydrogeology 6 LP Goldscheider

Erfolgskontrolle(n)
- Teilleistung T-BGU-106801 mit schriftlicher Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele
- Die Studierenden sind mit den vertieften Grundlagen und Methoden der Hydrogeologie vertraut.
- Sie können die Prozesse der Wasserbewegung im Untergrund quantitativ beschreiben und hydrochemische Wechselwirkungen zwischen Wasser und Gestein erläutern.
- Sie sind in der Lage praxisnahe, hydrogeologische Fragestellungen im Bereich der Erkundung, Erschließung und dem Schutz von Grundwasser zu beantworten.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
General and Applied Hydrogeology:
- Unterirdischer Abfluss: Prozesscharakteristik, Messtechnik und Berechnungsverfahren, regionale und zeitliche Variation
- Wasserbewegung im Untergrund, Grundwasserhydraulik
- Hydrochemie
- Grundwassernutzung: Erkundung von Grundwasservorkommen, Erschließung von Grundwasser und Grundwasserschutz
- Regionale Hydrogeologie

Field Methods in Hydrogeology:
- Pumpversuche und andere hydraulische Tests
- Tracerversuche
- Hydrochemische Probennahme und Monitoring

Empfehlungen
keine
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- General and Applied Hydrogeology Vorlesung, Übung: 30 Std.
- Field Methods in Hydrogeology Vorlesung/Übung: 15 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen, Übungen General and Applied Hydrogeology: 40 Std.
- Vor- und Nachbereitung Vorlesung/Übungen Field Methods in Hydrogeology: 25 Std.
- Prüfungsvorbereitung: 70 Std.

Summe: 180 Std.

Literatur
4.9 Modul: Freshwater Ecology (WSEM-CC371) [M-BGU-104922]

Verantwortung: Dr.-Ing. Stephan Fuchs
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Cross-Cutting Methods & Competencies (EV ab 01.04.2019)
Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules) (EV ab 01.04.2019)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (EV ab 01.04.2019)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules) (EV ab 01.04.2019)
Profilstudium / Water Resources Engineering (Supplementary Modules) (EV ab 01.04.2019)

Leistungspunkte: 6
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Bestandteil</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-109956</td>
<td>3 LP</td>
<td>Jedes Sommersemester</td>
<td>Fuchs, Hilgert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-109957</td>
<td>3 LP</td>
<td></td>
<td>Fuchs, Hilgert</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-109956 mit einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3
- Teilleistung T-BGU-109957 mit einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Voraussetzungen
keine

Modellierter Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-BGU-103361 - Water Ecology darf nicht begonnen worden sein.

Inhalt
In diesem Modul werden gewässerökologische Grundprinzipien, deren praktische Bedeutung und Umsetzung sowie davon abgeleitete Maßnahmenoptionen vorgestellt:

- Belastungen von Gewässern: Einleitungen, Stoffe, Sedimentproblematik
- Probenahmeverfahren
- Sauerstoffhaushalt
- Verfahren zur Bewertung der Wasserqualität und des Gewässerzustands
- praktische Übungen zur Bewertung der Wasserqualität und des Gewässerzustands im Gelände

Empfehlungen
keine
Anmerkungen

Das Modul wird ab dem Sommersemester 2019 neu angeboten und ersetzt das Modul Water Ecology.

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Applied Ecology and Water Quality Vorlesung/Seminar: 45 Std.
- Field Training Water Quality (Geländeübung, Block): 20 Std.

Selbststudium:

- Anfertigung des Berichts zur Geländeübung (Teilprüfung): 55 Std.
- Anfertigung des Seminarbeitrags mit Vortrag (Teilprüfung): 60 Std.

Summe: 180 Std.

Literatur

Jürgen Schwörbel, Methoden der Hydrobiologie, UTB für Wissenschaft 1999

kursbegleitende Materialien
4.10 Modul: Experiments in Fluid Mechanics (WSEM-CC471) [M-BGU-103377]

Verantwortung: Prof. Dr. Olivier Eiff
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Cross-Cutting Methods & Competencies

 Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
 Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
 Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
 Profilstudium / Water Resources Engineering (Supplementary Modules)

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-106760 mit einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
Vorlesung:
- typischer Aufbau hydraulischer und aerodynamischer Modelle.
- Dimensionsanalyse, dimensionslose Parameter.
- Messinstrumente.
- Einführung in statistische Fehleranalyse.
- Analogie numerische/physikalische Modellierung, Modellverfälschung.
- technisches Schreiben und Vortrag.

physikalische Experimente:
- Rohrströmung mit Klappe
- Gerinneströmung mit Schütze und Wechselsprung
- Venturi-Rohrströmung mit Kavitation
- Sinkgeschwindigkeiten von Kugeln
- Diffusion eines turbulenten Luftfreistrahls
- turbulenter Nachlauf
- Dammdurchsickerung

Empfehlungen
Modul Advanced Fluid Mechanics (WSEM-AF401)

Anmerkungen
keine
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Vorlesung/Laborübung: 60 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen: 30 Std.
- Auswertungen und Berichte zu den Experimenten (Teil der Prüfung): 60 Std.
- Vorbereitung mündliche Prüfung (Teil der Prüfung): 30 Std.

Summe: 180 Std.

Literatur
Tropea, C. et.al., 2007, Springer Handbook of Experimental Fluid Mechanics, Springer Verlag Berlin
4.11 Modul: Fundamentals of Numerical Algorithms for Engineers (WSEM-CC571) [M-BGU-104920]

Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Cross-Cutting Methods & Competencies (EV ab 01.04.2019)
Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules) (EV ab 01.04.2019)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (EV ab 01.04.2019)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules) (EV ab 01.04.2019)
Profilstudium / Water Resources Engineering (Supplementary Modules) (EV ab 01.04.2019)

Leistungspunkte 3
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Englisch
Level 4
Version 1

Modulhandbuch mit Stand vom 04.10.2019

Pflichtbestandteile

T-BGU-109953 Fundamentals of Numerical Algorithms for Engineers 3 LP Uhlmann

Erfolgskontrolle(n)
- Teilleistung T-BGU-109953 mit schriftlicher Prüfung nach § 4 Abs. 2 Nr. 1
Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele
Die Studierenden verstehen die grundlegende Idee (und Bedeutung) von numerischen Verfahren, um unterschiedliche mathematische Probleme im Ingenieurwesen zu lösen. Die Studierenden sind in der Lage, geeignete numerische Algorithmen für ein gegebenes mathematisches Problem auszuwählen und die Algorithmen in einer höheren Programmiersprache (z.B. Matlab) zu implementieren.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
- Arithmetik mit endlicher Genauigkeit
- numerische Lösung nicht-linearer Gleichungen
- numerische Integration
- Lösen linearer algebraischer Gleichungssysteme
- Interpolation / Approximation
- Fourier Transformation
- Lösen gewöhnlicher Differenzialgleichungen

Empfehlungen
gute Kenntnisse in Analyses, Linearer Algebra und Differenzialgleichungen und Vertrautsein mit mehreren höheren Programmiersprachen

Anmerkungen
neu angeboten ab Wintersemester 2019/20
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Vorlesung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen: 30 Std.
- Prüfungsvorbereitung: 30 Std.

Summe: 90 Std.
4.12 Modul: Introduction to Matlab (WSEM-CC772) [M-BGU-103381]

Verantwortung: Dr.-Ing. Uwe Ehret
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Cross-Cutting Methods & Competencies
Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
Profilstudium / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-BGU-106765 | Introduction to Matlab | 3 LP Ehret |

Erfolgskontrolle(n)
- Teilleistung T-BGU-106765 mit unbenoteter Studienleistung nach § 4 Abs. 3

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
unbenotet

Voraussetzungen
keine

Inhalt
- allgemeine Programmiergrundlagen: Programmierstrategien, Programmstrukturierung, Kontrollstrukturen, Operatoren und Variablen, Funktionen und Objekte, Matrizenrechnung
- Matlab-Grundlagen: Historische Entwicklung, Installation, Graphische Nutzeroberfläche, Toolboxen, Nutzung der Hilfefunktionen
- grundlegendes zur Programmierung mit Matlab: Syntax, Nutzung des Debuggers, Lesen und Schreiben von Dateien, Visualisierung von Daten

Programmierübungen in Form unbenoteter Hausarbeiten:
- Erstellung von Programmen zur Analyse und Visualisierung von Messdaten
- Planung und Programmierung eines einfachen dynamischen Modells
- die unbenoteten Hausarbeiten werden in Gruppen erarbeitet und präsentiert.

Empfehlungen
keine

Anmerkungen
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Vorlesung/Übung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesung/Übungen: 10 Std.
- kursbegleitende Hausarbeiten: 30 Std.
- abschließende Hausarbeit: 20 Std.

Summe: 90 Std.
4.13 Modul: Analysis of Spatial Data (WSEM-CC773) [M-BGU-103762]

Verantwortung: Prof. Dr.-Ing. Erwin Zehe
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Cross-Cutting Methods & Competencies (EV ab 01.04.2019)
Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules) (EV ab 01.04.2019)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (EV ab 01.04.2019)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules) (EV ab 01.04.2019)

Leistungspunkte: 6
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

| T-BGU-106605 | Geostatistics | 6 LP | Zehe |

Erfolgskontrolle(n)
- Teilleistung T-BGU-106605 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2
Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele
Die Studierenden können Methoden zur Analyse und Simulation von räumlich verteilten Umweltdaten erläutern und anwenden. Auf dieser Basis können sie selbständig experimentelle Designs zur Erhebung von Umweltdaten festlegen bzw. die Eignung vorhandener Daten für verschiedene Aufgabenstellungen beurteilen.

Die Studierenden sind in der Lage die Ergebnisse der Analyse- und Simulationsverfahren kritisch zu beurteilen und die mit den Eingangsdaten und den Verfahren verbundenen Unsicherheiten der Ergebnisse zu quantifizieren und zu bewerten.

Zusammensetzung der Modulnote
Modulnote ist Noten der Prüfung

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-BGU-103378 - Data Analysis and Environmental Monitoring darf nicht begonnen worden sein.

Inhalt

- Grundlagen der Umweltystemtheorie, Umweltmonitoring und experimentelles Design (Datentypen, Skalentriplett, Messverfahren)
- experimentelle Variogramme, gerichtete Variogramme, Indikatorvariogramme; Anpassung theoretischer Variogrammfunktionen; Anisotropie
- Krigingverfahren: Ordinary Kriging, Screening Eigenschaften von Kriging Schwerpunkten, BLUE, pure nugget effect, Kreuzvalidierung, RMSE
- Schätzung räumlicher Muster für nicht stationäre Daten (External Drift Kriging, Simple Updating)
- Schätzung räumlicher Muster bei Simulationen: Glättungsprobleme bei Interpolationsmethoden, Turning Band Simulations

Empfehlungen
Grundkenntnisse in Statistik
Modul Hydrological Measurements in Environmental Systems [bauIM2S05-HY5]

Vorkenntnisse in der Programmierung mit Matlab; ansonsten wird dringend empfohlen, am Kurs "Einführung in Matlab" (6224907) teilzunehmen.

Anmerkungen
Dieses Modul wird ab dem Sommersemester 2018 neu angeboten.
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Vorlesung/Übung: 60 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesung/Übungen: 60 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.

Literatur
4.14 Modul: Introduction to Environmental Data Analysis and Statistical Learning (WSEM-CC774-ENVDAT) [M-BGU-104880]

Verantwortung: Dr.-Ing. Uwe Ehret
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Cross-Cutting Methods & Competencies (EV ab 01.04.2019)

Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules) (EV ab 01.04.2019)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (EV ab 01.04.2019)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules) (EV ab 01.04.2019)
Profilstudium / Water Resources Engineering (Supplementary Modules) (EV ab 01.04.2019)

Leistungspunkte: 6
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

| T-BGU-109950 | Homework 'Introduction to Environmental Data Analysis and Statistical Learning' | 2 LP | Ehret |
| T-BGU-109949 | Introduction to Environmental Data Analysis and Statistical Learning | 4 LP | Ehret |

Erfolgskontrolle(n)
- Teilleistung T-BGU-109950 mit einer unbenoteten Studeinleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-BGU-109949 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-BGU-103378 - Data Analysis and Environmental Monitoring darf nicht begonnen worden sein.

Inhalt
- Explorative Datenanalyse
- Datenspeicherung / Datenbanken
- Wahrscheinlichkeitstheorie (kurze Wdh.)
- statistische Tests (kurze Wdh.)
- Bayes'sche Verfahren
- Informationstheorie
- Zeitreihen
- statistisches Lernen / maschinelles Lernen
- Grundlagen
- überwachtes Lernen
- nichtüberwachtes Lernen
Empfehlungen
Vorkenntnisse in Statistik, z.B. erfolgreiche Teilnahme an Probability and Statistics (CC911), und der Programmierung mit Matlab, z.B. erfolgreiche Teilnahme an Introduction to Matlab (CC772)

Anmerkungen
Das Modul wird ab dem Sommersemester 2019 neu angeboten.

Arbeitsaufwand
Präsenzzzeit (1 SWS = 1 Std. x 15 Wo.):

- Vorlesung/Übung: 60 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesung/Übungen: 20 Std.
- Bearbeitung Homework ’Introduction to Environmental Data Analysis and Statistical Learning’ (Prüfungsvorleistung): 60 Std.
- Prüfungsvorbereitung: 40 Std.

Summe: 180 Std.

Literatur

4.15 Modul: Integrated Infrastructure Planning (WSEM-CC791) [M-BGU-103380]

Verantwortung: Dr. Charlotte Kämpf
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Cross-Cutting Methods & Competencies
Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
Profilstudium / Water Resources Engineering (Supplementary Modules)

Leistungspunkte: 6
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile
T-BGU-106763 Booklet Integrated Infrastructure Planning 0 LP Kämpf
T-BGU-106764 Integrated Infrastructure Planning 6 LP Kämpf

Erfolgskontrolle(n)
- Teilleistung T-BGU-106763 mit unbenoteter Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-BGU-106764 mit schriftlicher Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele
Die Studierenden sind in der Lage, interdisziplinäre Texte zum Thema Infrastrukturplanung entsprechend ihrer Relevanz einzuordnen und hierzu weiterführende Fragen zu stellen. Die Studierenden können gezielt und selbständig Recherchen zur Beantwortung einer wissenschaftlichen Frage durchführen. Die Studierenden können Fachbegriffe differenziert beschreiben. Sie können die Texte in den Kontext integrierter Infrastrukturplanung und aktueller Problemstellungen zur Ressource Wasser stellen, um Lösungen zur Adaptation an regionale Gegebenheiten zu erarbeiten.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
Sozioökonomische Aspekte:

- natürliche Ressourcen als Wirtschaftsgut
- Szenario Analyse zu Abbau und Tragfähigkeit natürlicher Ressourcen, Bestimmung von Werten, Zusatzkosten
- Koordination von Aktivitäten zur wirtschaftlichen Entwicklung; strategische Planung, Indikatorsysteme
- Cost-Benefit-Analyse, Investment-Kriterien Ökonomie von Infrastrukturprojekten

Ökologische Aspekte/Umweltverträglichkeitsprüfung:

- Beschreibung: Biodiversität Habitat, Resilienz, Struktur & Dynamik von Ökosystemen; Nährstoffkreisläufe
- Bewertung: Bioindikatoren, ecosystem services - Geschichte der UVP, UVP in der EU, in anderen Ländern
- Impact Assessment im Infrastruktur
- Projektmanagement (mitigation, compensation, monitoring, auditing)

Empfehlungen
keine

Anmerkungen
WICHTIG:
Das Modul wird im Wintersemester 2019/20 weiterhin angeboten.
Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Vorlesung/Seminar: 40 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen, Seminar: 20 Std.
- Erstellen eines Booklets (Prüfungsvorleistung): 60 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.
4.16 Modul: Umweltkommunikation / Environmental Communication (WSEM-CC792) [M-BGU-101108]

Verantwortung: Dr. Charlotte Kämpf
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- Cross-Cutting Methods & Competencies
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
- Profilstudium / Water Resources Engineering (Supplementary Modules)

Leistungspunkte
- 6

Turnus
- Jedes Wintersemester

Dauer
- 1 Semester

Sprache
- Deutsch

Level
- 4

Version
- 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modultitel</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106620 Prüfungsvorleistung Umweltkommunikation</td>
<td>0 LP</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T-BGU-101676 Umweltkommunikation</td>
<td>6 LP</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-106620 mit einer un benoteten Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-BGU-101676 mit einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
- Komplexe sozio-technische Umweltsysteme: naturwissenschaftliche Grundlagen; Dynamik realer Systeme; Wechselwirkungen; ecosystem services; Struktur- und Prozessvielfalt der Umwelt, (Okosystemtheorie)
- Kommunikation: Interdisziplinarität, Transdisziplinarität; Umweltmanagement: Unsicherheit, Nichtwissen, Risiko

1. Textarten (genres), Publikationen Kulturen in akademischen Disziplinen (Zweck: Entscheidungsfindung, Lernen, Forschung)
2. Annotierte Bibliographie; Literaturrecherche, Zitate, Referenzen
3. Glossare (Ordnungsprinzipien, Klassen|Kategorien)
4. Textproduktion ARISTOTELES: ethos & logos & pathos CICERO inventio, dispositio, elocutio, memoria, action IMRaD, Stil; doc cycle (Wiederverwendung) Textproduktion (Gestaltprinzipien WERTHEIMER,.ppt); visuals (Tabellen, Abbildungen), Seitenlayout Guide for scientific texts, peer edit
5. Kommunikationsmodelle

Empfehlungen
keine

Anmerkungen
WICHTIG:
Das Modul wird im Wintersemester 2019/20 weiterhin angeboten.
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
 • Seminar (Vorlesung): 20 Std.

Selbststudium:
 • Vor- und Nachbereitung Seminar: 40 Std.
 • Erstellen der Literaturannotationen und des Impulsreferats (Prüfungsvorleistungen): 45 Std.
 • Vorbereitung des Vortrags, Erstellen des Manuskripts und des Posters (Prüfung): 75 Std.

Summe: 180 Std.

Literatur
Handouts mit aktuellen Beiträgen aus Fachzeitschriften, Tagespresse
4.17 Modul: Probability and Statistics (WSEM-CC911) [M-MATH-103395]

Verantwortung: Dr. Bernhard Klar
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Cross-Cutting Methods & Competencies
Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
Profilstudium / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-MATH-106784 | Probability and Statistics | 3 LP | Klar |

Erfolgskontrolle(n)

- Teilleistung T-BGU-106784 mit mündlicher Prüfung nach § 4 Abs. 2 Nr. 2
Einzelmessungen zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote

Modulnote ist Note der Prüfung

Voraussetzungen

keine

Inhalt

Die Vorlesung gibt eine kurzgefasste Einführung in die Wahrscheinlichkeitstheorie und behandelt einige ausgewählte statistische Methoden.

Schlüsselbegriffe:

Empfehlungen

keine

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Vorlesung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen: 35 Std.
- Prüfungsvorbereitung: 25 Std.

Summe: 90 Std.
4.18 Modul: Numerische Mathematik für die Fachrichtungen Informatik und Ingenieurwesen (WSEM-CC912) [M-MATH-103404]

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102242</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-102242 mit schriftlicher Prüfung nach § 4 Abs. 2 Nr. 1
Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele
Die Studierenden kennen die Umsetzung von mathematischem Wissen in die zahlenmäßige Lösung praktisch relevanter Fragestellungen. Dies ist ein wichtiger Beitrag zum tieferen Verständnis sowohl der Mathematik als auch der Anwendungsprobleme.

Im Einzelnen können die Studierenden:
- entscheiden, mit welchen numerischen Verfahren sie mathematische Probleme numerisch lösen können,
- das qualitative und asymptotische Verhalten von numerischen Verfahren beurteilen und
- die Qualität der numerischen Lösung kontrollieren.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
- Gleitkommarechnung
- Kondition mathematischer Probleme
- Vektor- und Matrixnormen
- Direkte Lösung linearer Gleichungssysteme
- Iterative Lösung linearer Gleichungssysteme
- Lineare Ausgleichsprobleme
- Lineare Eigenwertprobleme
- Lösung nichtlinearer Probleme: Fixpunktsatz, Newton-Verfahren
- Polynominterpolation
- Fouriertransformation (optional)
- Numerische Quadratur
- Numerische Lösung gewöhnlicher Differentialgleichungen (optional)

Empfehlungen
höhere Mathematik: Analysis; z. B. Höhere Mathematik I & II [0131000; 0180800]
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Vorlesung, Übung: 45 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen, Übungen: 65 Std.
- Prüfungsvorbereitung: 70 Std.

Summe: 180 Std.
Verantwortung: Dr. Gerald Brenner-Weiß
Prof. Dr. Gisela Guthausen

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von:
- Cross-Cutting Methods & Competencies
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
- Profilstudium / Water Resources Engineering (Supplementary Modules)

Leistungspunkte:
6

Turnus:
Jedes Sommersemester

Dauer:
1 Semester

Sprache:
Englisch

Level:
4

Version:
1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106837 Instrumentelle Analytik</td>
<td>4 LP</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T-CIWVT-106836 Organic Trace Analysis of Aqueous Samples</td>
<td>2 LP</td>
<td>Brenner-Weiß</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-106836 mit unbeoteter Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-BGU-106837 mit mündliche Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote

Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt

Instrumental Analysis:
Einführung in ausgewählte, moderne Methoden der instrumentellen Analytik:
- Optische Methoden
- Magnetische Resonanzverfahren, Massenspektrometrie
- Analytik über bildgebende Verfahren wie die MRT, die µCT und optische Methoden (CLSM und OCT)
- Grundlagen der Daten- und Bildanalyse

Organic Trace Analysis of Aqueous Samples:

Empfehlungen
Modul "Fundamentals of Water Quality (AF201)"
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
 • Instrumental Analysis Vorlesung: 30 Std.
 • Organic Trace Analysis of Aqueous Samples Praktikum: 30 Std.

Selbststudium:
 • Vor- und Nachbereitung Vorlesungen Instrumental Analysis: 60 Std.
 • Auswertung und Bericht zum Laborpraktikum (Prüfungsvorleistung): 30 Std.
 • Prüfungsvorbereitung: 30 Std.

Summe: 180 Std.
4.20 Modul: Forschungsmodul: Mikrobielle Diversität (WSEM-CC922)
[M-CHEMBIO-100238]

Verantwortung: Prof. Dr. Johannes Gescher
Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften
Bestandteil von: Cross-Cutting Methods & Competencies
Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
Profilstudium / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-CHEMBIO-108674 | Mikrobielle Diversität | 8 LP Gescher |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art
Insgesamt können 100 Punkte erworben werden.

- ein Prüfungsteil erfolgt in Form eines schriftlichen Tests über 120 Minuten, zur Vorlesung und zu den Inhalten des Praktikums. Über diesen Prüfungsteil können 80 Punkte der Gesamtpunktzahl erreicht werden.
- Neben diesem schriftlichen Test muss ein Protokoll zum Praktikum erstellt werden, welches wissenschaftlichen Standards genügen muss. Für dieses Protokoll können 10 Punkte erlangt werden.
- Des weiteren muss die Arbeit des Praktikums in einem Vortrag innerhalb der jeweiligen Arbeitsgruppe in einem Vortrag vorgestellt werden. Für diesen Teil können ebenfalls 10 Punkte erworben werden.

Qualifikationsziele

 Folgende Lernziele sollen von ihnen erreicht werden

Sie lernen die wichtigsten Gruppen der Bacteria und Archaea kennen und können größere Gruppen sicher beschreiben

Sie verstehen wie die physiologischen Merkmale von Mikroorganismen zum Aufbau von komplexen Konsortien führen

Sie können beschreiben, auf welche Art globale Stoffkreisläufe von Mikroorganismen bestimmt werden

Sie beherrschen aerobe und anaerobe Kulturtechniken

Sie erarbeiten im Team Strategien, um Mikroorganismen anhand ihrer physiologischen Merkmale zu isolieren

Sie zeigen, dass sie Ergebnisse wissenschaftlich solide erzielen und in Form von kurzen Artikeln wiedergeben können.

In Form kurzer Übersichtsvorträge erlernen sie die Fähigkeit, ihre Ergebnisse in kondensierter und ansprechender Form an ihre Zuhörer weiterzugeben.

Voraussetzungen

keine

Inhalt

In diesem Praktikum sollen sie sich mit der Erforschung von mikrobieller Diversität und den Möglichkeiten zur Isolierung von Mikroben beschäftigen. Die Isolierung anaeroben Organismen soll dabei im Vordergrund stehen. Neben der Isolierung sollen sie molekulare Methoden erlernen, über die Diversität nicht nur anreichernd sondern auch ohne Isolierung beschrieben werden kann.

Der Kurs wird begleitet von Vorlesungen und Seminaren in denen die wichtigsten Gruppen der Bacteria und Archaea behandelt werden sollen.
Anmerkungen
Modulturnus: jedes WS, 19/20 im Nachblock des Wintersemesters
Modulduer: 4 Wochen, ganztags

Arbeitsaufwand
Präsenzzeit:

- Vorlesung: 15 h; 1 SWS; 1 LP
- Praktikum: 90 h; 6 SWS; 7 LP

Vor- und Nachbereitungszeit:

- Vorlesung: 15 h
- Praktikum: 120 h

Lehr- und Lernformen
Vorlesung, Seminar, Praktikum

Literatur
4.21 Modul: Mass Transfer and Reaction Kinetics (WSEM-CC925) [M-CIWVT-104879]

Verantwortung: Prof. Dr.-Ing. Nikolaos Zarzalis
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: Cross-Cutting Methods & Competencies (EV ab 01.04.2019)
Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules) (EV ab 01.04.2019)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (EV ab 01.04.2019)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules) (EV ab 01.04.2019)
Profilstudium / Water Resources Engineering (Supplementary Modules) (EV ab 01.04.2019)

Leistungspunkte: 4
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-CIWVT-109913</th>
<th>Mass Transfer and Reaction Kinetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 LP Zarzalis</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-CIWVT-109913 mit schriftlicher Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele
The students understand and master the analogy between momentum, energy and mass transport. They can calculate the mass flows for different fluid and thermodynamics conditions with the aid of the analogy of heat and mass transfer (Nu- and Sh-number). Furthermore, the students can apply the basic chemical kinetic concepts in order to calculate the rates of species. The students can analyze new problems with the aid of the acquired methods. The lack of knowledge to solve the problems is closed by a literature study.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
Mass Transfer
- Fick's law of diffusion
 - Equimolar diffusion
 - One way diffusion
- Liquid-vapor interfaces
- Analogy between heat and mass transfer – Sherwood and Nusselt number

Reaction Kinetics
- Elementary reaction rates – Bimolecular reaction and collision theory
- Rate of reaction for multistep mechanisms
- Net production rates
- Rate coefficients and equilibrium constants
- Steady-state approximation
- Chemical time scales
- Partial equilibrium

Empfehlungen
keine
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
 • Vorlesung: 30 Std.

Selbststudium:
 • Vor- und Nachbereitung Vorlesungen: 60 Std.
 • Prüfungsvorbereitung: 30 Std.

Summe: 180 Std.

Literatur
4.22 Modul: Remote Sensing and Positioning (WSEM-CC931) [M-BGU-103442]

Verantwortung: Prof. Dr.-Ing. Maria Hennes
Prof. Dr.-Ing. Hansjörg Kutterer
Dr.-Ing. Thomas Vögtle

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Cross-Cutting Methods & Competencies
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
- Profilstudium / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-BGU-106843 | Remote Sensing and Positioning | 6 LP | Hennes, Kutterer, Vögtle |

Erfolgskontrolle(n)
- Teilleistung T-BGU-106843 mit mündlicher Prüfung nach § 4 Abs. 2 Nr. 2
Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Empfehlungen
siehe englische Version

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Terrestrial & Satellite Positioning Vorlesung, Übung: 30 Std.
- Remote Sensing & Geo-Information Systems Vorlesung, Übung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen, Übungen Terrestrial & Satellite Positioning: 30 Std.
- Vor- und Nachbereitung Vorlesungen, Übungen Remote Sensing & Geo-Information Systems: 30 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.
4.23 Modul: Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen (WSEM-CC933) [M-BGU-101846]

Verantwortung: Dr.-Ing. Norbert Rösch
Dr.-Ing. Sven Wursthorn

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Cross-Cutting Methods & Competencies
Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
Profilstudium / Water Resources Engineering (Supplementary Modules)

Leistungspunkte: 6
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-103541</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung</td>
<td>3 LP</td>
<td>Rösch, Wursthorn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-101681</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen</td>
<td>3 LP</td>
<td>Rösch, Wursthorn</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n):
- Teilleistung T-BGU-103541 mit unbeoteter Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-BGU-101681 mit schriftlicher Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele:
Die Studierenden verstehen ferner die grundlegenden Prinzipien eines Geoinformationssystems und sind mit der Definition des Raumbezuges vertraut. Sie sind in der Lage einfache projektbezogene Fragestellungen selbständig zu bearbeiten.

Zusammensetzung der Modulnote:
Modulnote ist Note der Prüfung.

Voraussetzungen:
keine

Inhalt:
Bezugs- und Koordinatensysteme sowie deren Transformation (z. B. UTM, Gauß-Krüger); Grundlagen der Informatik (z.B. Datenbanken und SQL); Geodatenmodellierung und Erfassung (z. B. GNSS); Normierung und Standardisierung in GIS (z.B. ISO, OGC, WFS, WMS); Einfache Algorithmen (z. B. „Point in Polygon“)

Empfehlungen:
keine

Arbeitsaufwand:
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung, Übung: 60 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen, Übungen: 60 Std.
- Prüfungsvorbereitung, inkl. online-Test (Prüfungsvorleistung): 60 Std.

Summe: 180 Std.
Literatur
4.24 Modul: Geodateninfrastrukturen und Web-Dienste (WSEM-CC935) [M-BGU-101044]

Verantwortung: Prof. Dr.-Ing. Stefan Hinz
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Cross-Cutting Methods & Competencies
Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
Profilstudium / Water Resources Engineering (Supplementary Modules)

Leistungspunkte: 4
Turnus: Einmalig
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

T-BGU-101757 Geodateninfrastrukturen und Web-Dienste, Vorlesung
3 LP Hinz

T-BGU-101756 Geodateninfrastrukturen und Web-Dienste
1 LP Hinz

Erfolgskontrolle(n)
- Teilleistung T-BGU-101757 mit unbeoteter Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-BGU-101756 mit mündliche Prüfung nach § 4 Abs. 2 Nr. 2

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Empfehlungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Vorlesung, Übung: 20 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen, Übungen: 20 Std.
- Bearbeitung der Übungsaufgaben (Prüfungsvorleistung): 60 Std.
- Prüfungsvorbereitung: 20 Std.

Summe: 120 Std.
4.25 Modul: Language Skills 1 (2 CP) (WSEM-CC949) [M-BGU-103466]

Verantwortung: Dr. Jan Wienhöfer
Einrichtung: Universität gesamt
Bestandteil von: Cross-Cutting Methods & Competencies

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Language Skills 1 (2 LP)

| T-BGU-106884 | Platzhalter 1 Language Skills 1 | 2 LP |
| T-BGU-106885 | Platzhalter 2 Language Skills 1 ub | 2 LP |

Erfolgskontrolle(n)

Es können eine oder mehrere Erfolgskontrolle in Form eines schriftlichen Leistungsnachweises abgelegt werden. Diese können benotet oder unbenotet sein.

Die Anmeldung erfolgt direkt beim Sprachenzentrum (www.spz.kit.edu) bzw. Studienkolleg für ausländische Studierende (www.stk.kit.edu) und nicht online.

Qualifikationsziele

Die Studierenden erwerben Kompetenzen der interkulturellen Kommunikation.

Zusammensetzung der Modulnote

unbenotet

Voraussetzungen

Es kann nur ein Modul gewählt werden. Dieses Modul darf nicht zusammen mit einem der Module

- M-BGU-103468 - Language Skills 2 (3 CP)
- M-BGU-103469 - Language Skills 3 (4 CP)
- M-BGU-103470 - Language Skills 4 (5 CP)
- M-BGU-103471 - Language Skills 5 (6 CP)

gewählt werden. Entsprechendes gilt für die anderen Module.

Kurse in der eigenen Muttersprache dürfen nicht besucht werden.

Es dürfen keine Englischkurse belegt werden, die unter oder auf dem Niveau der Zugangsvoraussetzung des Masterstudiengangs Water Science and Engineering liegen.

Modellierte Voraussetzungen

Es muss eine von 4 Bedingungen erfüllt werden:

1. Das Modul M-BGU-103468 - Language Skills 2 (3 CP) darf nicht begonnen worden sein.
2. Das Modul M-BGU-103469 - Language Skills 3 (4 CP) darf nicht begonnen worden sein.

Inhalt

Studierende haben im Rahmen dieses Moduls die Möglichkeit, Kenntnisse in einer Sprache ihrer Wahl zu erlangen, bzw. ihre Kenntnisse zu verbessern. Informationen zum Kursangebot und zur Anmeldung sind den Seiten des Sprachenzentrums zu entnehmen: www.spz.kit.edu

Studierende, deren Muttersprache nicht Deutsch ist, haben die Möglichkeit am Studienkolleg Deutschkurse zu belegen: www.stk.kit.edu/deutsch_kurse.php.

Empfehlungen

keine
Anmerkungen
Language Skills können im Umfang von 2 - 6 LPs erworben werden. Für die gewünschte Anzahl an LP ist das entsprechende Modul zu wählen. Das Modulhandbuch enthält exemplarisch die Beschreibung für das Modul "M-BGU-103466 - Language Skills 1 (2 CP)". Die Sprachprüfungen können benotet oder unbenotet abgelegt werden.
Das Modul kann nur im Rahmen des Faches "Cross-Cutting Methods and Competencies" gewählt oder als Zusatzleistung anerkannt werden.

Arbeitsaufwand
entsprechend des/r gewählten Sprachkurse/s
4.26 Modul: Water Technology (WSEM-PA221) [M-CIWVT-103407]

Verantwortung: Prof. Dr. Harald Horn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilstudium / Water Technologies & Urban Water Cycle (Profilmodule)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
Profilstudium / Water Resources Engineering (Pflichtmodule A)

Leistungspunkte 6
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Englisch
Level 4
Version 1

Pflichtbestandteile

| T-CIWVT-106802 | Water Technology | 6 LP | Horn |

Erfolgskontrolle(n)
- Teilleistung T-CIWVT-106802 mit mündlicher Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt

Empfehlungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
 • Vorlesung, Übung: 45 Std.

Selbststudium:
 • Vor- und Nachbereitung Vorlesungen, Übungen: 60 Std.
 • Prüfungsvorbereitung: 75 Std.

Summe: 180 Std.

Literatur
Vorlesungsskript (ILIAS Studierendenportal), Praktikumsskript
4.27 Modul: Membrane Technologies and Excursions (WSEM-PA222) [M-CIWVT-103413]

Verantwortung: Dr. Gudrun Abbt-Braun
 Prof. Dr. Harald Horn
 Dr.-Ing. Florencia Saravia

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilstudium / Water Technologies & Urban Water Cycle (Profilmodule)
 Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
 Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
 Profilstudium / Water Resources Engineering (Pflichtmodule A)

Leistungspunkte 6
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Englisch
Level 4
Version 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Code</th>
<th>Bezeichnung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106820</td>
<td>Excursions: Waste Water Disposal and Drinking Water Supply</td>
<td>0 LP</td>
<td>Abbt-Braun</td>
</tr>
<tr>
<td>T-CIWVT-106819</td>
<td>Membrane Technologies and Excursions</td>
<td>6 LP</td>
<td>Abbt-Braun, Horn, Saravia</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-CIWVT-106820 mit unbenoteter Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-CIWVT-106819 mit mündlicher Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele
Die Studierenden verfügen über grundlegende Kenntnisse der Membran technik in der Wasseraufbereitung und Abwasserbehandlung, gängige Membranverfahren (Umkehrosmose, Nanofiltration, Ultrafiltration, Mikrofiltration, Dialyse) und deren verschiedene Anwendungen. Sie sind in der Lage solche Anlagen auszulegen.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
- Das Lösungs-Diffusions-Modell
- Die Konzentrationspolarisation und die Konsequenzen für die Membranmodulauslegung
- Membranherstellung und Membraneigenschaften
- Membranconfiguration und Membranmodul
- Membrananlagen zur Meerwasserentsalzung und zur Brackwasserbehandlung.
- Membranbioreaktoren zur Abwasserbehandlung
- Biofouling, Scaling und Vermeidungsstrategien für beides
- Exkursionseinführung und Exkursionen: Abwasserentsorgung und Trinkwasserversorgung, Exkursionen zu kommunalen Kläranlagen und zu Wasserwerken.

Empfehlungen
Modul "Water Technology (WSEM-PA221)"
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Membrane Technologies in Water Treatment Vorlesung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen Membrane Technologies in Water Treatment: 45 Std.
- Vor- und Nachbereitung Vorlesungen, Exkursionen Waste Water Disposal and Drinking Water Supply – Introduction and Excursions: 15 Std.
- Prüfungsvorbereitung: 65 Std.

Summe: 180 Std.

Literatur

Vorlesungsunterlagen in ILIAS
4.28 Modul: Practical Course in Water Technology (WSEM-PA223) [M-CIWVT-103440]

Verantwortung: Prof. Dr. Harald Horn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Profilmodule)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
- Profilstudium / Water Resources Engineering (Pflichtmodule A)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-CIWVT-106840 | Practical Course in Water Technology | 4 LP Horn |

Erfolgskontrolle(n)

- Teilleistung T-CIWVT-106840 mit Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

Die Studierenden sind in der Lage, die grundlegenden wichtigen Aufbereitungsverfahren in der Wassertechnik zu erklären. Sie können Berechnungen durchführen, Daten vergleichen und interpretieren. Sie sind fähig, methodische Hilfsmittel zu gebrauchen, die Zusammenhänge zu analysieren und die unterschiedlichen Verfahren kritisch zu beurteilen.

Zusammensetzung der Modulnote

Modulnote ist Note der Prüfung

Voraussetzungen

Das Modul "Water Technology (WSEM-PA221)" muss begonnen sein, d.h. mindestens die Anmeldung zur Prüfung muss erfolgt sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-CIWVT-103407 - Water Technology muss begonnen worden sein.

Inhalt

Praktikum: 6 Versuche aus folgender Auswahl: Kalklöseversuch, Flockung, Adsorption an Aktivkohle, Photochemische Oxidation, Atomabsorptionspektrometrie, Ionenchromatographie, Flüssigkeitschromatographie, Summenparameter, und Vortrag

Empfehlungen

keine

Arbeitsaufwand

- Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
 - Vorlesung/Praktikum: 30 Std.

Selbststudium:

- Erstellen der Praktikumsprotokolle (Prüfungsteil): 55 Std.
- Prüfungsvorbereitung: 35 Std.

Summe: 120 Std.
Literatur
Vorlesungsskript im ILIAS
Praktikumsskript
4.29 Modul: Biofilm Systems (WSEM-PA224) [M-CIWVT-103441]

Verantwortung: Prof. Dr. Harald Horn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Profilmodule)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
- Profilstudium / Water Resources Engineering (Pflichtmodule A)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-CIWVT-106841 | Biofilm Systems | 4 LP | Horn |

Erfolgskontrolle(n)
- Teilleistung T-CIWVT-106841 mit mündlicher Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

Die Studierenden können die Struktur und Funktion von Biofilmen in natürlichen Habitaten und technischen Anwendungen beschreiben und die wesentlichen Einflussfaktoren und Prozesse zur Ausbildung spezifischer Biofilme erklären. Sie sind mit Verfahren zur Visualisierung der Strukturen sowie mit Modellen für die Simulation des Biofilmwachstums vertraut. Sie können geeignete Verfahren für die Untersuchungen von Biofilmen auswählen und die Habitatbedingungen bewerten.

Zusammensetzung der Modulnote

Modulnote ist Note der Prüfung

Voraussetzungen

keine

Inhalt

Empfehlungen

keine

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung: 30 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen: 30 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 120 Std.
4.30 Modul: Wastewater Treatment Technologies (WSEM-PA321) [M-BGU-104917]

Verantwortung: Dr.-Ing. Tobias Morck
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Profilstudium / Water Technologies & Urban Water Cycle (Profilmodule) (EV ab 01.04.2019)
 Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (EV ab 01.04.2019)
 Profilstudium / Environmental System Dynamics & Management (Supplementary Modules) (EV ab 01.04.2019)
 Profilstudium / Water Resources Engineering (Pflichtmodule A) (EV ab 01.04.2019)

Leistungspunkte: 6
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Code</th>
<th>Bezeichnung</th>
<th>LP</th>
<th>Autoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-109265</td>
<td>Term Paper 'International Sanitary Engineering'</td>
<td>1 LP</td>
<td>Fuchs, Morck</td>
</tr>
<tr>
<td>T-BGU-109948</td>
<td>Wastewater Treatment Technologies</td>
<td>5 LP</td>
<td>Fuchs, Morck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-109265 mit einer unbenoteten Studeinleistung nach § 4 Abs. 3 als Pürfungsvorleistung
- Teilleistung T-BGU-109948 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-BGU-103399 - Process Engineering in Wastewater Treatment darf nicht begonnen worden sein.
Inhalt

Municipal Wastewater Treatment:
Die Studierenden erlangen vertieftes Wissen über Bemessung und Betrieb typischer Verfahrenstechniken der kommunalen Abwasserreinigung in Deutschland. Behandelt werden u.a.

- verschiedene Belebungsverfahren
- Anaerobtechnik und Energiegewinnung
- Kofermentation und nachwachsende Rohstoffe
- Filtrationsverfahren
- Abwasserdesinfektion und pathogene Keime
- chemische und biologische Phosphorelimination
- Spurenstoffelimination
- Ressourcenschutz und Energieeffizienz

International Sanitary Engineering:
Die Studierenden verfügen über das Wissen der Bemessung und des Betriebs der im internationalen Raum eingesetzten Techniken zur Wasseraufbereitung. Sie können diese Techniken analysieren, beurteilen und entscheiden, wann neue, stärker ganzheitlich orientierte Methoden eingesetzt werden können. Behandelt werden:

- Belebungsverfahren
- Tropf- und Tauchkörper
- Teichanlagen
- Bodenfilter / Wetlands
- UASB / EGSB / Anaerobe Filter
- dezentrale versus zentrale Systeme
- Stoffstromtrennung
- Energiegewinnung aus Abwasser
- Trinkwasseraufbereitung
- Abfallwirtschaft

Empfehlungen
Modul "Urban Water Infrastructure and Management (AF301)"

Anmerkungen
Das Modul wird ab dem Sommersemester 2019 neu angeboten und ersetzt das Modul Process Engineering in Wastewater Treatment.

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Municipal Wastewater Treatment Vorlesung/Übung: 30 Std.
- International Sanitary Engineering Vorlesung/Übung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesung/Übungen Municipal Wastewater Treatment: 30 Std.
- Anfertigung des Term paper 'International Sanitary Engineering' (Prüfungsvorleistung): 45 Std.
- Prüfungsvorbereitung: 45 Std.

Summe: 180 Std.

Literatur
ATV-DVWK (1997) Handbuch der Abwassertechnik: Mechanische Abwasserreinigung, Band 6, Verlag Ernst & Sohn, Berlin
M 4.31 Modul: Wastewater and Storm Water Treatment Facilities (WSEM-PA322) [M-BGU-104898]

Verantwortung:
Dr.-Ing. Stephan Fuchs
Dr.-Ing. Tobias Morck

Einrichtung:
KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Profilmodule) (EV ab 01.04.2019)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (EV ab 01.04.2019)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules) (EV ab 01.04.2019)
- Profilstudium / Water Resources Engineering (Pflichtmodule A) (EV ab 01.04.2019)

Leistungspunkte: 6
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

| T-BGU-109934 | Wastewater and Storm Water Treatment Facilities | 6 LP Fuchs, Morck |

Erfolgskontrolle(n)
- Teilleistung T-BGU-109934 mit einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-BGU-103362 - Wastewater and Storm Water Treatment darf nicht begonnen worden sein.

Inhalt
Besichtigung, Beschreibung und Bewertung verschiedener wassertechnologischer Anlagen:

- Regenklärbecken
- Regenüberlaufbecken
- Retentionsbodenfilter
- Kläranlagen

Dimensionierungsansätze für Anlagen in der Regenwasserbehandlung

Empfehlungen
Modul "Urban Water Infrastructure and Management (AF301)"

Anmerkungen
Das Modul wird ab dem Sommersemester 2019 neu angeboten und ersetzt das Modul Wastewater and Storm Water Treatment.

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
 • Vorlesung/Übung: 60 Std.

Selbststudium:
 • Vor- und Nachbereitung Vorlesung/Übungen: 30 Std.
 • Vortrag und Anfertigung der Hausarbeit (Prüfung): 90 Std.

Summe: 180 Std.

Literatur
4.32 Modul: Industrial Water Management (WSEM-PA323) [M-BGU-104073]

Verantwortung: Dr.-Ing. Tobias Morck
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Profilmodule) (EV ab 01.04.2018)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (EV ab 01.04.2018)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules) (EV ab 01.04.2018)
- Profilstudium / Water Resources Engineering (Pflichtmodule A) (EV ab 01.04.2018)

Leistungspunkte: 6
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 2

Pflichtbestandteile
- T-BGU-108448 Industrial Water Management 5 LP Morck
- T-BGU-109980 Lab report "Industrial Water Management" 1 LP Morck

Erfolgskontrolle(n)
- Teilleistung T-BGU-109980 mit einer unbenoteten Studienleistung nach § 4 Abs. 3 als Pürfungsvorleistung
- Teilleistung T-BGU-108448 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
In diesem Modul werden unterschiedliche Typen von industriellen Abwässern (Leder-, Papier- und metallbe-, metallverarbeitende Industrie) betrachtet und angepasste chemische, physikalisch-chemische und wo erforderlich auch biologische Behandlungsmethoden entwickelt.

Empfehlungen
keine

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung/Übung: 60 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesung/Übungen: 40 Std.
- Bericht zur Laborarbeit (Prüfungsvorleistung): 30 Std.
- Prüfungsvorbereitung: 50 Std.

Summe: 180 Std.
4.33 Modul: Water Distribution Systems (WSEM-PA621) [M-BGU-104100]

Verantwortung: Prof. Dr. Franz Nestmann

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Profilmodule) (EV ab 01.04.2018)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (EV ab 01.04.2018)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules) (EV ab 01.04.2018)
- Profilstudium / Water Resources Engineering (Pflichtmodule A) (EV ab 01.04.2018)

Leistungspunkte: 6

Turnus: Jedes Wintersemester

Dauer: 1 Semester

Sprache: Englisch

Level: 4

Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-BGU-108485</th>
<th>Project Report Water Distribution Systems</th>
<th>2 LP Nestmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-108486</td>
<td>Water Distribution Systems</td>
<td>4 LP Nestmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-108485 mit einer unbenoteten Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-BGU-108486 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt

In diesem Modul werden folgende Themen vertieft:

- Grundlagen der Wasserversorgung
- Grundlagen der Rohrnetzmodellierung und Rohrnetzberechnung
- Einführung in die Software Epanet (Rohrnetzberechnung) und ArcGIS (Geoinformationssystem)
- Wasserbedarf
- Wasserverluste
- Kalibrierung von Rohrnetzmodellen
- Bemessung von Rohrnetzen, Speicherbehältern und Förderanlagen
- Anwendung des technischen Regelwerks des DVGW

Das erlernte Wissen wird in einem semesterbegleitenden, exemplarischen Planungsprojekt von den Studierenden angewandt.

Empfehlungen
Hydromechanik (insbesondere Rohrhydraulik)

Anmerkungen
Dieses Modul wird ab dem Sommersemester 2018 ausschließlich in Englisch angeboten. Es ersetzt das Modul M-BGU-103443 Wasserverteilungssysteme.
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
 - Vorlesung/Übung: 60 Std.

Selbststudium:
 - Vor- und Nachbereitung Vorlesung/Übungen: 30 Std.
 - Projektarbeit Wasserverteilung (Prüfungsvorleistung): 60 Std.
 - Prüfungsvorbereitung: 30 Std.

Summe: 180 Std.

Literatur
Schrifttum zur Vorlesung (auf Deutsch und Englisch)
4.34 Modul: Applied Microbiology (WSEM-PA982) [M-CIWVT-103436]

Verantwortung: Prof. Dr. Thomas Schwartz
Andreas Tiehm

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilstudium / Water Technologies & Urban Water Cycle (Profilmodule)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
Profilstudium / Water Resources Engineering (Pflichtmodule A)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Bezeichnung</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106834</td>
<td>Microbiology for Engineers</td>
<td>4 LP Schwartz</td>
</tr>
<tr>
<td>T-CIWVT-106835</td>
<td>Environmental Biotechnology</td>
<td>4 LP Tiehm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-CIWVT-106834 mit mündlicher Prüfung nach § 4 Abs. 2 Nr. 2
- Teilleistung T-CIWVT-106835 mit mündlicher Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Voraussetzungen
keine

Inhalt

Empfehlungen
Verständnis mikrobiologischer Prozesse in der Umwelt und in technischen Systemen

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Microbiology for Engineers Vorlesung: 30 Std.
- Environmental Biotechnology Vorlesung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen Microbiology for Engineers: 45 Std.
- Prüfungsvorbereitung Microbiology for Engineers: 45 Std.
- Vor- und Nachbereitung Vorlesungen Environmental Biotechnology: 45 Std.
- Prüfungsvorbereitung Environmental Biotechnology: 45 Std.

Summe: 240 Std.
4.35 Modul: Environmental Fluid Mechanics (WSEM-PB421) [M-BGU-103383]

Verantwortung: Prof. Dr. Olivier Eiff
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Profilmodule)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
Profilstudium / Water Resources Engineering (Pflichtmodule B)

Leistungspunkte 6
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Englisch
Level 4
Version 1

Pflichtbestandteile
T-BGU-106767 Environmental Fluid Mechanics 6 LP Eiff

Erfolgskontrolle(n)
- Teilleistung T-BGU-106767 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
Dieses Modul vermittelt die grundlegenden Konzepte und Modelle der Umweltströmungsmechanik in Wasser und Luft. Es werden die folgenden Themen behandelt: Struktur der Turbulenz in Flüssen und Gerinnen, Diffusion und Dispersion, atmosphärische Grenzschichten, interne Gravitationswellen, Instabilitäten und Durchmischung, geschichtete Turbulenz in Ozeanen, buoyant jets und plumes.

Empfehlungen
Module "Advanced Fluid Mechanics (AF401)“, "Analysis of Turbulent Flows (PB521)"

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung/Übung: 60 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesung/Übungen: 60 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.
Verantwortung: Prof. Dr. Olivier Eiff
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Profilmodule)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
- Profilstudium / Water Resources Engineering (Pflichtmodule B)

Leistungspunkte 6
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

| T-BGU-106770 | Technische Hydraulik | 6 LP | Eiff |

Erfolgskontrolle(n)
- Teilleistung T-BGU-106770 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele
Die Studierenden sind in der Lage, ein komplexes strömungsmechanisches Problem zu analysieren, zu berechnen und zu bewerten. Diese Fähigkeiten werden an zahlreichen praktischen Ingenieurbeispielen geübt.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt

Teil 1: Rohrleitungssysteme
- Dimensionierung von Rohrleitungssystemen
- Berechnung von Rohrnetzen
- instationäre Strömung in Rohrleitungen

Teil 2: Kontrollbauwerke
- Berechnung der Leistungsfähigkeit
- Energiedissipation
- Schussrinnen
- instationärer Betrieb

Empfehlungen
Lehrveranstaltung Hydromechanik (6200304), Modul Advanced Fluid Mechanics (AF401)

Anmerkungen
WICHTIG:
Das Modul wird im Sommersemester 2019 nicht angeboten.

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung, Übung: 60 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen, Übungen: 60 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.
Literatur
Vorlesungsskript Rohrhydraulik, 2009
Lang, C., Jirka, G., 2009, Einführung in die Gerinnehydraulik, Universitätsverlag Karlsruhe
Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
 Profilstudium / Fluid Mechanics & Hydraulic Engineering (Profilmodule)
 Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (EV bis 30.09.2019)
 Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
 Profilstudium / Water Resources Engineering (Pflichtmodule B)

Leistungspunkte 6
Turnus Jedes Sommersemester
Dauer 2 Semester
Sprache Englisch
Level 4
Version 1

Pflichtbestandteile
T-BGU-103561 Analysis of Turbulent Flows 6 LP Uhlmann

Erfolgskontrolle(n)
- Teilleistung T-BGU-103561 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele
Die Studierenden sind in der Lage, die grundlegenden Charakteristika turbulenter Strömungen zu beschreiben und deren Auswirkungen auf verschiedene Bilanzgrößen zu quantifizieren. Sie können die Problematik der Berechnung turbulenter Strömungen einordnen. Mit diesem Wissen können sie die Vor- und Nachteile der verschiedenen Modellierungsansätze je nach Anwendung gegeneinander abwägen und eine angemessene Auswahl für ein gegebenes Problem treffen. Die Studierenden können die zu erwartenden Ergebnisse von Turbulenzmodellen kritisch hinsichtlich Voraussagefähigkeit und Berechnungsaufwand analysieren.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt

Empfehlungen
Hydromechanik/Strömungsmechanik (Umgang mit den Navier-Stokes Gleichungen) Höhere Mathematik (Analysis - partielle Differentialgleichungen, Fourieranalyse, Vektoren/Tensoren, Matrizen und Eigenwerte; Statistik) Vorkenntnisse in der Programmierung mit Matlab sind hilfreich; ansonsten wird empfohlen, am Kurs "Einführung in Matlab (CC772)" teilzunehmen.

Anmerkungen
WICHTIG:
Das Modul wird ab dem Sommersemester 2020 nicht mehr in dieser Form angeboten werden. Es wird durch ein neues Modulangebot ersetzt werden.
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Fluid Mechanics of Turbulent Flows Vorlesung/Übung: 30 Std.
- Modeling of Turbulent Flows - RANS and LES Vorlesung, Übung: 30 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen Fluid Mechanics of Turbulent Flows: 30 Std.
- Vor- und Nachbereitung Vorlesungen Modeling of Turbulent Flows - RANS and LES: 30 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.
Modul: Advanced Computational Fluid Dynamics (WSEM-PB522) [M-BGU-103384]

Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Profile Module)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
- Profilstudium / Water Resources Engineering (Profile Module B)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile
- T-BGU-106769 Parallel Programming Techniques for Engineering
- T-BGU-106768 Numerical Fluid Mechanics II

Erfolgskontrolle(n)
- Teilleistung T-BGU-106768 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2
- Teilleistung T-BGU-106769 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele
Die Studierenden sind in der Lage, einfache Strömungsprobleme basierend auf den Navier-Stokes Gleichungen selbständig numerisch zu lösen. Dazu gehört der Entwurf einer Lösungsmethode, die Analyse von deren Eigenschaften (Stabilität, Präzision, Rechenaufwand), die algorithmische Implementierung, die Validierung mittels geeigneter Testfälle, und schließlich die Dokumentation und Kommunikation der Ergebnisse. Darüber hinaus werden die Studierenden in die Lage versetzt, Techniken zur Nutzung massiv paralleler Rechnersysteme zur Lösung von Strömungsproblemen hinsichtlich Effizienz und Anwendbarkeit zu bewerten und auf Modellprobleme anzuwenden.

Zusammensetzung der Modulnote
Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Voraussetzungen
- Modul "Numerical Fluid Mechanics (AF501)" muss abgeschlossen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Inhalt

Im Modulteil Parallel Programing Techniques for Engineering Problems werden die Grundlagen der Programmierung von massiv-parallelen Rechnersystemen vermittelt. Dazu werden die gängigen Rechnerarchitekturen und die am weitesten verbreiteten Paradigmen der parallelen Programmierung vorgestellt. Mit Hilfe des Standards Message Passing Interface (MPI) werden Techniken für die Realisierung einiger Standardalgorithmen der numerischen Strömungsmechanik (und anderer Disziplinen, in denen Feldprobleme auftreten) auf Parallelrechnern erarbeitet.

Empfehlungen
Programmierkenntnisse in einer Compilersprache (C,C++, FORTRAN oder äquivalent) sind dringend empfohlen.
Anmerkungen

keine

Arbeitsaufwand

Präsenzzzeit (1 SWS = 1 Std. x 15 Wo.):

• Parallel Programming Techniques for Engineering Problems Vorlesung, Übung: 30 Std.
• Numerical Fluid Mechanics II Vorlesung, Übung: 30 Std.

Selbststudium:

• Vor- und Nachbereitung Vorlesungen, Übungen Parallel Programming Techniques for Engineering Problems: 30 Std.
• Prüfungsvorbereitung Parallel Programming Techniques for Engineering Problems (Teilprüfung): 30 Std.
• Vor- und Nachbereitung Vorlesungen, Übungen Numerical Fluid Mechanics II: 30 Std.
• Prüfungsvorbereitung Numerical Fluid Mechanics II (Teilprüfung): 30 Std.

Summe: 180 Std.

Literatur

T.G. Mattson, B.A. Sanders, B.L. Massingill "Patterns for Parallel Programming" Addison-Wesley, 2004.
4.39 Modul: Hydraulic Structures (WSEM-PB631) [M-BGU-103389]

Verantwortung: Prof. Dr. Olivier Eiff

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Proflstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
Proflstudium / Fluid Mechanics & Hydraulic Engineering (Profilmodule)
Proflstudium / Environmental System Dynamics & Management (Supplementary Modules)
Proflstudium / Water Resources Engineering (Pflichtmodule B)

Leistungspunkte 6

Turnus Jedes Semester

Dauer 2 Semester

Sprache Englisch

Level 4

Version 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106774 Groundwater Flow around Structures</td>
<td>3 LP Trevisan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-110404 Interaction Flow - Hydraulic Structures</td>
<td>3 LP Gebhardt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Teilleistung T-BGU-106774 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2
- Teilleistung T-BGU-110404 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote

Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Voraussetzungen

keine

Inhalt

In diesem Modul werden folgende Themen vertieft:

- Potentialtheorie
- Strömungen im Untergrund
- bauwerksseitige Anpassungen an Grundwasserströmungen
- Ermittlung hydrostatischer und hydrodynamischer Strömungskräfte
- Übersicht Verschlussorgane: Schleusentore, Wehrverschlüsse, Tiefschütze
- strömungsbedingte Bauwerksschwingungen

Empfehlungen

keine

Anmerkungen

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Groundwater Flow around Structures Vorlesung/Übung: 30 Std.
- Interaction Flow - Hydraulic Structures Vorlesung/Übung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesung/Übungen Groundwater Flow around Structures: 30 Std.
- Prüfungsvorbereitung Groundwater Flow around Structures (Teilprüfung): 30 Std.
- Vor- und Nachbereitung Vorlesung/Übungen Interaction Flow - Hydraulic Structures: 30 Std.
- Prüfungsvorbereitung Interaction Flow - Hydraulic Structures (Teilprüfung): 30 Std.

Summe: 180 Std.

Literatur
Naudascher; E, 1991, Hydrodynamic Forces, Balkema Pub., Rotterdam
C. Lang, Skript Interaktion Strömung - Wasserbauwerk
4.40 Modul: Flow and Sediment Dynamics in Rivers (WSEM-PB633) [M-BGU-104083]

Verantwortung: Prof. Dr. Franz Nestmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules) (EV ab 01.04.2018)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Profilmodule) (EV ab 01.04.2018)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules) (EV ab 01.04.2018)
- Profilstudium / Water Resources Engineering (Pflichtmodule B) (EV ab 01.04.2018)

Leistungspunkte 6
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Englisch
Level 4
Version 1

Pflichtbestandteile
- T-BGU-108467 Flow and Sediment Dynamics in Rivers 4 LP Nestmann

Erfolgskontrolle(n)
- Teilleistung T-BGU-108466 mit einer unbenoteten Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-BGU-108467 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
In diesem Modul werden folgende Themen vertieft:

- geomorphologischer Zyklus
- Raum-Zeit Ansätze in der Morphologie
- anthropogene Einflüsse auf die Fließgewässerdynamik
- Vegetationshydraulik
- Interaktionsansätze
- Geschiebe- und Feststoffmanagement in Fließgewässern
- Praxisbeispiele

Empfehlungen
Grundkenntnisse der Strömungsmechanik, Modul "Hydraulic Engineering (AF601)"

Anmerkungen
Dieses Modul wird ab dem Sommersemester 2018 ausschließlich in Englisch angeboten. Es ersetzt das Modul M-BGU-103393 Fließgewässerdynamik und Feststofftransport.
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Morphodynamics Vorlesung/Übung: 30 Std.
- Flow Behavior of Rivers Vorlesung/Übung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesung/Übungen Morphodynamics: 15 Std.
- Vor- und Nachbereitung Vorlesungen/Übungen Flow Behavior of Rivers: 15 Std.
- Anfertigung der Studienarbeit (Prüfungsvorleistung): 45 Std.
- Prüfungsvorbereitung: 45 Std.

Summe: 180 Std.
4.41 Modul: Versuchswesen und Strömungsmesstechnik (WSEM-PB641) [M-BGU-103388]

Verantwortung: Dr.-Ing. Frank Seidel

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Profilmodule)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
- Profilstudium / Water Resources Engineering (Pflichtmodule B)

Leistungspunkte 6

Turnus Jedes Wintersemester

Dauer 1 Semester

Sprache Deutsch/Englisch

Level 4

Version 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106773 Wasserbauliches Versuchswesen II</td>
<td>3 LP</td>
<td>Seidel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-110411 Flow Measurement Techniques</td>
<td>3 LP</td>
<td>Gromke</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Teilleistung T-BGU-106773 mit einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3
- Teilleistung T-BGU-110411 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote

Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Voraussetzungen

keine

Inhalt

In diesem Modul werden folgende Themen vertieft:

- Grundgleichungen der Strömungsmechanik
- Messverfahren und deren Anwendungsgebiete
- experimentelle Modelle mit beweglicher Sohle
- Versuche und Experimente zu Probleme aus der Mehrphasenströmung (Wasser-Luft, Wasser-Feststoff)

Empfehlungen

Modul "Experiments in Fluid Mechanics (CC471)", Vorkenntnisse im wasserbaulichen Versuchswesen

Anmerkungen

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Flow Measurement Techniques Vorlesung/Übung: 30 Std.
- Wasserbauliches Versuchswesen II Vorlesung/Übung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesung/Übungen Flow Measurement Techniques: 30 Std.
- Prüfungsvorbereitung Flow Measurement Techniques (Teilprüfung): 30 Std.
- Vor- und Nachbereitung Vorlesung/Übungen Wasserbauliches Versuchswesen II: 30 Std.
- Erstellung der Hausarbeit Wasserbauliches Versuchswesen II (Teilprüfung): 30 Std.

Summe: 180 Std.
4.42 Modul: Numerische Strömungsmodellierung im Wasserbau (WSEM-PB651) [M-BGU-103390]

Verantwortung: Dr.-Ing. Peter Oberle
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Profilmodule)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
- Profilstudium / Water Resources Engineering (Pflichtmodule B)

Leistungspunkte: 6
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

| T-BGU-106776 | Numerische Strömungsmodellierung im Wasserbau | 6 LP | Oberle |

Erfolgskontrolle(n)
- Teilleistung T-BGU-106776 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt

Empfehlungen
grundlegende Kenntnisse zu Hydrologie, Wasserbau und Wasserwirtschaft sowie Gerinnehydraulik

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung/Übung: 60 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesung/Übungen: 60 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.

Literatur
vorlesungsbegleitende Unterlagen
4.43 Modul: Energiewasserbau (WSEM-PB653) [M-BGU-100103]

Verantwortung: Dr.-Ing. Peter Oberle

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Profilmodule)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
- Profilstudium / Water Resources Engineering (Pflichtmodule B)

Leistungspunkte: 6

Turnus: Jedes Sommersemester

Dauer: 1 Semester

Sprache: Deutsch

Level: 4

Version: 1

Pflichtbestandteile

| T-BGU-100139 | Energiewasserbau | 6 LP | Oberle |

Erfolgskontrolle(n)
- Teilleistung T-BGU-100139 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele
Die Studierenden können die Funktionsweisen verschiedener Turbinentypen beschreiben und Auswahlkriterien für deren Einsatzbereiche definieren. Sie sind in der Lage, die grundsätzliche Herangehensweise bei der Planung und Bemessung von Wasserkraftanlagen zu reproduzieren und eigene Berechnungen zur Turbinenvorauswahl durchzuführen. Die hierfür notwendigen Hilfsmittel können sie methodisch angemessen auswählen und anwenden.

Die Studierenden können die aktuellen politischen Rahmenbedingungen in Bezug auf die Energiewende mit den Mitschülern kritisch diskutieren und ihre persönliche Meinung zu diesem Thema mit Fachargumenten unterstützen.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt

Empfehlungen
Lehrveranstaltung Wasserbau und Wasserwirtschaft (6200511)

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung, Übung: 60 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen, Übungen: 60 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.

Literatur
Folienumdrucke;
Modul: Verkehrswasserbau (WSEM-PB655) [M-BGU-103392]

Verantwortung: Dr.-Ing. Andreas Kron

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Profilemodule)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
- Profilstudium / Water Resources Engineering (Profilemodule B)

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106779 Studienarbeit "Verkehrswasserbau"</td>
<td>1 LP</td>
<td>Kron</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-106780 Verkehrswasserbau</td>
<td>5 LP</td>
<td>Kron</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-106779 mit einer unbenoteten Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-BGU-106780 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote

Modulnote ist Note der Prüfung

Voraussetzungen

keine

Inhalt

- Binnenwasserstraßen
- Schleusen
- Hebewerke
- Fahrdynamik von Schiffen
- Sohl- und Böschungssicherung
- Interaktion Schiff-Wasserstraße

Empfehlungen

Lehrveranstaltung Wasserbau und Wasserwirtschaft (6200511)

Anmerkungen

keine

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung/Übung: 60 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesung/Übungen: 30 Std.
- Anfertigung der Studienarbeit (Prüfungsvorleistung): 30 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.
4.45 Modul: Projektstudium: Wasserwirtschaftliche Planungen (WSEM-PB661) [M-BGU-103394]

Verantwortung: Dr.-Ing. Frank Seidel
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
 Profilstudium / Fluid Mechanics & Hydraulic Engineering (Profilmodule)
 Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
 Profilstudium / Water Resources Engineering (Pflichtmodule B)

Leistungspunkte: 6
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

T-BGU-106783 Projektstudium: Wasserwirtschaftliche Planungen 6 LP Nestmann, Seidel

Erfolgskontrolle(n)
- Teilleistung T-BGU-106783 mit einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele
Die Studierenden können die grundlegenden Schritte im Zusammenhang mit einem Renaturierungsprojekt selbständig durchlaufen. Sie können die ingenieurstechnischen Probleme identifizieren und die dazugehörigen Bemessungsansätze anwenden.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
In diesem Modul werden folgende Themen vertieft:
- grundlegende Planungsmethodik bei wasserwirtschaftlichen Projekten
- Abrechnung von Ingenieursleistungen nach der HOAI
- Kosten-Nutzen-Rechnung
- Durchgängigkeit von Fließgewässern
- Gewässerentwicklungsplanung
- Vegetationskartierung
- Erfolgskontrolle

Empfehlungen
Modul "Flow and Sediment Dynamics in Rivers (PB633)"

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung/Übung: 30 Std.
Selbststudium:
- Vor- und Nachbereitung Vorlesung/Übungen: 30 Std.
- Anfertigung der Hausarbeit (Prüfung): 120 Std.

Summe: 180 Std.
4.46 Modul: River Basin Modeling (WSEM-PC341) [M-BGU-103373]

Verantwortung: Dr.-Ing. Stephan Fuchs

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profilstudium / Environmental System Dynamics & Management (Profilmodule)
Profilstudium / Water Resources Engineering (Pflichtmodule C)

Leistungspunkte: 6
Turnus: Jedes Sommersemester
Dauer: 2 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-BGU-106603</th>
<th>River Basin Modelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 LP</td>
<td>Fuchs</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-106603 mit Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt

Empfehlungen
Module "Urban Water Infrastructure and Management (AF301)", "Water Ecology (CC371)"

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Mass Fluxes in River Basins Vorlesung: 30 Std.
- Modeling Mass Fluxes in River Basins Übung: 30 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen Mass Fluxes in River Basins: 60 Std.
- Projektarbeit River Basin Modeling (Prüfung): 60 Std.

Summe: 180 Std.

Literatur

Water Science and Engineering Master 2016 (Master of Science (M.Sc.))
Modulhandbuch mit Stand vom 04.10.2019

98
4.47 Modul: Groundwater Management (WSEM-PC561) [M-BGU-100340]

Verantwortung: Dr. Ulf Mohrlok
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profilstudium / Environmental System Dynamics & Management (Profilmodule)
- Profilstudium / Water Resources Engineering (Pflichtmodule C)

Leistungspunkte
- **6**
- **Turnus:** Jedes Sommersemester
- **Dauer:** 2 Semester
- **Sprache:** Englisch
- **Level:** 4
- **Version:** 1

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100624 Groundwater Hydraulics</td>
<td>3 LP</td>
<td>Jedes Sommersemester</td>
<td>2 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T-BGU-100625 Numerical Groundwater Modeling</td>
<td>3 LP</td>
<td>Mohrlok</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-100624 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2
- Teilleistung T-BGU-100625 mit einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Voraussetzungen
keine

Inhalt
- Grundwassersysteme
- strömungsmechanische Prozesse in porösen Medien
- Verfahren zur Bilanzierung von Grundwasserströmungen und Stofftransportvorgängen
- Beispiele zu Grundwassermanagement
- Bearbeitung einer Projektaufgabe

Empfehlungen
grundlegende Kenntnisse zu Strömungsmechanik, Hydrologie, Stofftransport und numerischen Methoden

Anmerkungen
keine
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Groundwater Hydraulics Vorlesung/Übungen: 30 Std.
- Numerical Groundwater Modeling Präsentationen/Projektbesprechung: 15 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesung/Übungen, Bearbeitung von Übungsaufgaben Groundwater Hydraulics: 40 Std.
- Prüfungsvorbereitung Groundwater Hydraulics (Teilprüfung): 20 Std.

Summe: 185 Std.

Literatur

4.48 Modul: Management of Water Resources and River Basins (WSEM-PC721) [M-BGU-103364]

Verantwortung: Dr.-Ing. Uwe Ehret
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profilstudium / Environmental System Dynamics & Management (Profimodule)
- Profilstudium / Water Resources Engineering (Pflichtmodule C)

Leistungspunkte 6
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Englisch
Level 4
Version 1

Pflichtbestandteile

| T-BGU-106597 | Management of Water Resources and River Basins | 6 LP | Ehret |

Erfolgskontrolle(n)
- Teilleistung T-BGU-106597 mit einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3

Einzelnheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
- Definition, Inhalte und Beispiele des Integrierten Flussgebietsmanagements
- Verfahren zur Multi-Kriterien Entscheidungsfindung (Utility Matrix)
- hydrologische Modellierung: Umweltsystemtheorie, Kalibrierung und Validierung, Sensitivitäts- und Unsicherheitsanalyse
- Verfahren zur hydrologischen Bemessung

Die Studienleistungen werden in Gruppen erarbeitet und präsentiert.

Empfehlungen
Vorkenntnisse in Hydrologie und Ingenieurhydrologie

Anmerkungen
keine
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Vorlesung/Übung: 60 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesung/Übungen: 20 Std.
- veranstaltungsbegleitende Hausaufgaben (Prüfungsteile): 60 Std.
- Erstellen der abschließenden Hausarbeit (Prüfungsteil): 40 Std.

Summe: 180 Std.
4.49 Modul: Subsurface Flow and Contaminant Transport (WSEM-PC725) [M-BGU-103872]

Verantwortung: Prof. Dr.-Ing. Erwin Zehe

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules) (EV ab 01.04.2019)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (EV ab 01.04.2019)
- Profilstudium / Environmental System Dynamics & Management (Profilmodule) (EV ab 01.04.2019)
- Profilstudium / Water Resources Engineering (Pflichtmodule C) (EV ab 01.04.2019)

Leistungspunkte
- 6

Turnus
- Jedes Sommersemester

Dauer
- 1 Semester

Sprache
- Englisch

Level
- 4

Version
- 1

Pflichtbestandteile

| T-BGU-106598 | Transport and Transformation of Contaminants in Hydrological Systems | 6 LP | Zehe |

Erfolgskontrolle(n)
- Teilleistung T-BGU-106598 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele
Die Studierenden können die Transport- und Abbauprozesse von Nähr- und Schadstoffen im Oberflächenabfluss und in der ungesättigten Zone in ländlichen Einzugsgebieten erklären.

Durch die selbständige Anwendung von analytischen und prozess-basierten Modellen sind sie in der Lage, Modellparameter aus Feldversuchen abzuschätzen, die Wasser- und Stoffflüsse in der kritischen Zone zu bilanzieren und Aussagen zu Risiken der Schadstoffverlagerung in natürlichen Böden zu treffen.

Die Studierenden können die Grenzen der Anwendbarkeit dieser Modellansätze in natürlichen, heterogen strukturierten Böden beurteilen.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-BGU-103369 - Transport and Transformation of Contaminants in Hydrological Systems darf nicht begonnen worden sein.
Inhalt
Transportprozesse in der ungesättigten Zone im Zusammenhang mit Infiltration, Oberflächenabfluss, Bodenwasserbewegung:

- advektiv-dispersiver Transport in homogenen und heterogenen Böden
- partikulärer Transport durch Erosion
- Adsorption
- Reaktions- und Abbauprozesse von Stoffen im Boden (Stoffumwandlung, mikrobiologischer Abbau)
- Modellierung des Transportverhaltens von Schadstoffen im Boden (z.B. Pestizide) mit analytischen Modellen
- Risikoaanalyse für Pestizide im Boden (Transport, Aufenthaltszeiten, Adsorption, Abbau)
- Schätzung von Modellparametern aus Feldversuchen
- Parametrisierung von Adsorptionsisothermen
- Durchbruchskurven

Computerübung:

- Anwendung eines prozessbasierten Modells zur Simulation von Wasser- und Stofftransport
- eigenständige Durchführung eines Risiko-Assessments für Pflanzenschutzmittel mittels einfacher Simulationsverfahren

Empfehlungen
Module Water and Energy Cycles [WSEM-AF701] und Hydrological Measurements in Environmental Systems [WSEM-PC732]; Vorkenntnisse in der Programmierung mit Matlab; ansonsten wird dringend empfohlen, am Kurs Einführung in Matlab (6224907) teilzunehmen

Anmerkungen
Dieses Modul wird ab dem Sommersemester 2018 neu angeboten.

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Vorlesung/Übung: 60 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesung/Übungen: 60 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.

Literatur
Modul: Hydrological Measurements in Environmental Systems (WSEM-PC732) [M-BGU-103763]

Verantwortung: Dr. Jan Wienhöfer
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules) (EV ab 01.04.2019)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (EV ab 01.04.2019)
Profilstudium / Environmental System Dynamics & Management (Profilmodule) (EV ab 01.04.2019)
Profilstudium / Water Resources Engineering (Pflichtmodule C) (EV ab 01.04.2019)

Leistungspunkte: 6
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile
T-BGU-106599 Hydrological Measurements in Environmental Systems 6 LP Wienhöfer

Erfolgskontrolle(n)
- Teilleistung T-BGU-106599 mit einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-BGU-103371 - Experimental Hydrology darf nicht begonnen worden sein.

Inhalt
- Einführung in Umweltystemtheorie und Umweltmesswesen (Skalen, Messunsicherheiten), statistische Auswertung von Daten und Fehlerrechnung
- Seminar zu hydrologischen Messverfahren für Feld und Labor: Abfluss, Bodenfeuchte, Infiltration, hydraulische Leitfähigkeit
- mehrtägige Labor- und Geländeübung mit selbständiger Durchführung hydrologischer Messungen

Empfehlungen
Vorkenntnisse in Hydrology

Anmerkungen
Dieses Modul wird ab dem Sommersemester 2018 neu angeboten.

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
 • Labor- und Geländeübung: 70 Std.

Selbststudium:
 • Vor- und Nachbereitung Labor- und Geländeübungen: 10 Std.
 • Erstellen der Präsentationen und Berichte (Prüfung): 100 Std.

Summe: 180 Std.

Literatur
Skript zur Geländeübung
4.51 Modul: Gewässerlandschaften (WSEM-PC761) [M-BGU-103400]

Verantwortung: Dr. Charlotte Kämpf
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules) (EV bis 30.09.2019)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (EV bis 30.09.2019)
- Profilstudium / Environmental System Dynamics & Management (Profilmodule) (EV bis 30.09.2019)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules) (EV bis 30.09.2019)
- Profilstudium / Water Resources Engineering (Pflichtmodule C) (EV bis 30.09.2019)
- Profilstudium / Water Resources Engineering (Supplementary Modules) (EV bis 30.09.2019)

Leistungspunkte 6
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

| T-BGU-106788 | Prüfungsvorleistung Gewässerlandschaften | 0 LP | Kämpf |
| T-BGU-106789 | Gewässerlandschaften | 6 LP | Kämpf |

Erfolgskontrolle(n)
- Teilleistung T-BGU-106788 mit einer unbenoteten Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-BGU-106789 mit einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistungen.

Qualifikationsziele

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
Gewässerlandschaften (Typologie)
- Funktion und Nutzung von Gewässerlandschaften
- anthropogene Eingriffe und ihre Wirkung
- Grundlegende Konzepte zur Analyse, Bewertung und Renaturierung von Gewässerlandschaften
- Bewertung von Gewässerlandschaften:
 (a) physikalisch-chemisch
 (b) gewässermorphologisch
 (c) biotisch
- Gewässerlandschaften in der wasserwirtschaftlichen und naturschutz-fachlichen Planung und Praxis
- Exkursion in die Rheinaue

Empfehlungen
keine

Anmerkungen
WICHTIG:
Das Modul wird ab dem Wintersemester 2019/20 nicht mehr angeboten.
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Seminar (Vorlesung)/Übung: 40 Std.

Selbststudium:

- Vor- und Nachbereitung Seminar (Vorlesung)/Übung: 20 Std.
- Erstellen der Literaturannotation und des Impulsreferats (Prüfungsvorleistung): 45 Std.
- Vorbereitung des Vortrags, Erstellen des Manuskripts und des Posters (Prüfung): 75 Std.

Summe: 180 Std.
4.52 Modul: Protection and Use of Riverine Systems (WSEM-PC762) [M-BGU-103401]

Verantwortung: Dr. Charlotte Kämpf
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profilstudium / Environmental System Dynamics & Management (Profile Modules)
- Profilstudium / Water Resources Engineering (Pflichtmodule C)

Leistungspunkte 6
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Englisch
Level 4
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106790</td>
<td>Prerequisite Protection and Use of Riverine Systems</td>
<td>1 LP</td>
</tr>
<tr>
<td>T-BGU-106791</td>
<td>Protection and Use of Riverine Systems</td>
<td>5 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-106790 mit unbenoteter Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-BGU-106791 mit Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistungen.

Qualifikationsziele

Die Studierenden sind in der Lage, interdisziplinäre Texte zum Thema Flussgebiete nach ihrer Relevanz einzuordnen und hierzu weiterführende Fragen zu stellen. Die Studierenden können gezielt und selbständig Recherchen zur Beantwortung einer wissenschaftlichen Frage durchführen. Studierende können die Texte in den Kontext integrierter Managementstrategien und aktueller Problemstellungen zur Ressource Wasser stellen, um regionale Gegebenheiten bei der Lösung zu berücksichtigen.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt

Belange der Wasserwirtschaft:

- angepasste Technologien (small hydropower systems)
- Wasserverteilungsnetze
- Planung zum integrierten Wassermanagement
- Berücksichtigung geographischer, gesellschaftlicher und politischer Rahmenbedingungen

Internationaler Naturschutz:

- EU-Richtlinien: WRRL, FFH Richtlinie, Natura 2000
- Artenschutzstrategien
- Renaturierungskonzepte

Empfehlungen
keine

Anmerkungen
keine
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

• Seminar, Exkursion: 50 Std.

Selbststudium:

• Vor- und Nachbereitung Seminar, Exkursion: 40 Std.
• Erstellen der Literaturannotation, des Impulsreferats und des Exkursionsberichts (Prüfungsvorleistungen): 30 Std.
• Vorbereitung des Vortrags und Erstellen des Manuskripts (Prüfung): 60 Std.

Summe: 180 Std.
Modul: Hydrogeologie: Gelände- und Labormethoden (WSEM-PC821) [M-BGU-102441]

Verantwortung: Dr. rer. nat. Nadine Göppert

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profilstudium / Environmental System Dynamics & Management (Profilmodule)
Profilstudium / Water Resources Engineering (Pflichtmodule C)

Leistungspunkte: 6

Turnus: Jedes Sommersemester

Dauer: 1 Semester

Sprache: Deutsch

Level: 4

Version: 2

Pflichtbestandteile

| T-BGU-104834 | Hydrogeologie: Gelände- und Labormethoden | 6 LP | Göppert |

Erfolgskontrolle(n)

- Teilleistung T-BGU-104834 mit Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3
- Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

- Die Studierenden können Grundwasserbeprobungen durchführen und Vor-Ort-Parameter bestimmen.
- Sie sind in der Lage, eine hydrochemische Vollanalyse durchzuführen.
- Sie können Markierungsversuche, Pumpversuche und weitere hydrogeologische Versuche planen, durchführen und auswerten.

Zusammensetzung der Modulnote

- Modulnote ist Note der Prüfung

Voraussetzungen

- keine

Inhalt

- Planung und Durchführung von Grundwassermarkierungsversuchen
- Probennahme von Wasserproben
- Messung der Vor-Ort-Parameter
- Installation von Online-Messgeräten
- Schüttungsmessungen
- Durchführung und Auswertung eines Pumpversuchs
- Durchführung und Auswertung hydraulischer Tests
- Analytik von künstlichen Tracern
- Analytik von natürlichen Wasserinhaltstoffen
- Grundlagen der Modellierung von Tracerdurchgangskurven

Empfehlungen

- Modul "Hydrogeology (AF801)"

Anmerkungen

- Aus organisatorischen Gründen muss die Teilnehmerzahl auf max. 20 beschränkt werden. Informationen zum Auswahlverfahren erfolgen per Aushang.
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

• Vorbereitendes Seminar: 15 Std.
• Gelände- und Laborübungen: 25 Std.

Selbststudium:

• Vor- und Nachbereitung Vorbereitendes Seminar: 10 Std.
• Präsentation Vorbereitendes Seminar (Prüfungsteil): 40 Std.
• Erstellen des Bericht zu Gelände- und Laborübungen (Prüfungsteil): 80 Std.

Summe: 170 Std.
4.54 Modul: Hydrogeologie: Grundwassermodellierung (WSEM-PC831) [M-BGU-102439]

Verantwortung: Dr. Tanja Liesch
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules) (EV bis 30.09.2019)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (EV bis 30.09.2019)
- Profilstudium / Environmental System Dynamics & Management (Profilmodule) (EV bis 30.09.2019)
- Profilstudium / Water Resources Engineering (Pflichtmodule C) (EV bis 30.09.2019)

Leistungspunkte 6
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile
T-BGU-104757 Hydrogeologie: Grundwassermodellierung 6 LP Liesch

Erfolgskontrolle(n)
- Teilleistung T-BGU-104757 mit Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3
Einzeldetails zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele
- Die Studierenden können Strömungs- und Transportvorgänge im Grundwasser quantitativ beschreiben.
- Sie können verschiedene numerische Methoden zur Grundwassermodellierung anwenden und sind in der Lage, einfache Anwendungsfälle selbständig zu lösen.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
- Erstellung von konzeptionellen hydrogeologischen Modellen
- Grundlagen der Strömungsmodellierung: Strömungsgleichung
- Grundlagen der Transportmodellierung: Transportmechanismen, Lösung der Transportgleichung (Stofftransport und Wärmetransport)
- Aufbau eines numerischen Modells
- Inverse Modellierung und Kalibrierung
- Übungsaufgaben mit MODFLOW und FEFLOW

Empfehlungen
Modul "Hydrogeology (AF801)"

Anmerkungen
Aus organisatorischen Gründen muss die Teilnehmerzahl auf max. 20 beschränkt werden. Informationen zum Auswahlverfahren erfolgen per Aushang.

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung, Übung: 50 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen, Übungen: 50 Std.
- Projektbearbeitung Grundwassermodellierung, inkl. Berichterstellung und Vortrag (Prüfung): 80 Std.

Summe: 180 Std.
4.55 Modul: Hydrogeologie: Karst und Isotope (WSEM-PC841) [M-BGU-102440]

Verantwortung: Prof. Dr. Nico Goldscheider
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profilstudium / Environmental System Dynamics & Management (Profilmodule)
Profilstudium / Water Resources Engineering (Pflichtmodule C)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

T-BGU-104758 Hydrogeologie: Karst und Isotope 6 LP Goldscheider

Erfolgskontrolle(n)
- Teilleistung T-BGU-104758 mit schriftlicher Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

- Die Studierenden können die hydrogeologischen Eigenschaften von Karstsystem erklären und im Gelände erkennen.
- Sie sind in der Lage, relevante Untersuchungsmethoden der Karsthdrogeologie hinsichtlich Erkundung, Erschließung, Gefährdung und Schutz von Karstquellen anzuwenden.
- Sie können relevante Isotopenmethoden in der Hydrogeologie erläutern und anwenden.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt

- Geomorphologie und Hydrologie von Karstlandschaften
- Mineralogie, Stratigraphie und geologische Struktur von Karstsystemen
- Kalk-Kohlensäuregleichgewicht, Verkarstung und Speläogenese
- Grundwasserströmung in Karstquäfern
- Modellieransätze in der Karst-Hydrogeologie
- Verletzlichkeit und Schadstofftransport im Karst
- Brunnen und Trinkwasserfassungen in Karstquäfern
- Isotopenmethoden in Theorie und Praxis

Empfehlungen
Modul "Hydrogeology (AF801)"

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Karsthdrogeologie Vorlesung/Übung: 30 Std.
- Isotopenmethoden in der Hydrogeologie Vorlesung/Übung: 15 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesung/Übungen Karsthdrogeologie: 45 Std.
- Vor- und Nachbereitung Vorlesung/Übungen Isotopenmethoden in der Hydrogeologie: 20 Std.
- Prüfungsvorbereitung: 70 Std.

Summe: 180 Std.
4.56 Modul: Management von Fluss- und Auenökosystemen (WSEM-PC986) [M-BGU-103391]

Verantwortung: Prof. Dr. Florian Wittmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profilstudium / Environmental System Dynamics & Management (Profilmodule)
- Profilstudium / Water Resources Engineering (Pflichtmodule C)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-BGU-106777 | Fluss- und Auenökologie | 3 LP Wittmann |
| T-BGU-106778 | Ökosystemmanagement | 3 LP Damm, Wittmann |

Erfolgskontrolle(n)

- Teilleistung T-BGU-106777 mit schriftlicher Prüfung nach § 4 Abs. 2 Nr. 1
- Teilleistung T-BGU-106778 mit Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote

Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen.

Voraussetzungen

keine

Inhalt

Empfehlungen

Beginn zum Wintersemester mit dem Kurs "Fluss- und Auenökologie"

Anmerkungen

Keine
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Fluss- und Auenökologie Vorlesung: 30 Std.
- Ökosystemmanagement Seminar: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen Fluss- und Auenökologie: 30 Std.
- Prüfungsvorbereitung Fluss- und Auenökologie: 30 Std.
- Vor- und Nachbereitung Seminar Ökosystemmanagement: 30 Std.
- Vorbereitung Präsentation Ökosystemmanagement (Teilprüfung): 30 Std.

Summe: 180 Std.
4.57 Modul: Modul Masterarbeit (WSE-MSC-THESIS) [M-BGU-100080]

Verantwortung: Prof. Dr.-Ing. Peter Vortisch
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Masterarbeit (EV bis 30.06.2019)

Leistungspunkte: 30
Turnus: Jedes Semester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 5
Version: 1

Pflichtbestandteile
T-BGU-100093 Masterarbeit 30 LP Vortisch

Erfolgskontrolle(n)
Schriftliche Arbeit und abschließender Vortrag gemäß nach § 14 SPO

Qualifikationsziele
Die/Der Studierende ist in der Lage, eine komplexe Problemstellung aus einem Forschungsgebiet ihres/seines Faches selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden zu bearbeiten. Hierzu kann sie/er Literatur selbstständig auswählen, eigene Lösungswege finden, die Ergebnisse kritisch evaluieren und diese in den Stand der Forschung einordnen. Sie/Er ist weiterhin in der Lage, die wesentlichen Inhalte und Ergebnisse übersichtlich und klar strukturiert in einer schriftlichen Arbeit zusammenzufassen und in einem kurzen Vortrag zusammenfassend vorzustellen.

Zusammensetzung der Modulnote
Die Modulnote ergibt sich aus der Bewertung der Masterarbeit und des abschließenden Vortrags, der in die Bewertung eingeht.

Voraussetzungen
Voraussetzung für die Zulassung zum Modul Masterarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 42 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden (§ 14 Abs. 1).

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-BGU-103463 - Voraussetzungen Abschlussarbeit muss erfolgreich abgeschlossen worden sein.

Inhalt
Die Masterarbeit ist eine eigenständige, schriftliche Arbeit und beinhaltet die theoretische oder experimentelle Bearbeitung einer komplexen Problemstellung aus einem Teilbereich des Bauwesens nach wissenschaftlichen Methoden. Der thematische Inhalt der Masterarbeit ergibt sich durch die Wahl des Fachgebiets, in dem die Arbeit angefertigt wird. Der/Die Studierende darf Vorschläge für die Themenstellung einbringen.

Empfehlungen
Alle fachlichen und über-fachlichen notwendigen Qualifikationen zur Bearbeitung des gewählten Themas und der Anfertigung der Masterarbeit sollten erlangt worden sein.

Anmerkungen
keine

Arbeitsaufwand
- Bearbeitung der Aufgabenstellung: 720 Std.
- Verfassen der Masterarbeit: 150 Std.
- Vorbereitung des Vortrags: 30 Std.

Summe: 900 Std.
4.58 Modül: Modul Masterarbeit (WSE-MSC-THESIS) [M-BGU-104995]

Verantwortung: Prof. Dr.-Ing. Peter Vortisch
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Masterarbeit (EV ab 01.07.2019)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-BGU-110134 | Masterarbeit | 30 LP Vortisch |

Erfolgskontrolle(n)
schriftliche Arbeit und abschließender Vortrag gemäß nach § 14 SPO

Qualifikationsziele
Die/Der Studierende ist in der Lage, eine komplexe Problemstellung aus einem Forschungsgebiet ihres/seines Faches selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden zu bearbeiten. Hierzu kann sie/er Literatur selbstständig auswählen, eigene Lösungswege finden, die Ergebnisse kritisch evaluieren und diese in den Stand der Forschung einordnen. Sie/Er ist weiterhin in der Lage, die wesentlichen Inhalte und Ergebnisse übersichtlich und klar strukturiert in einer schriftlichen Arbeit zusammenzufassen und in einem kurzen Vortrag zusammenfassend vorzustellen.

Zusammensetzung der Modulnote
Die Modulnote ergibt sich aus der Bewertung der Masterarbeit und des abschließenden Vortrags, der in die Bewertung eingeht.

Voraussetzungen
Voraussetzung für die Zulassung zum Modul Masterarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 42 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden (§ 14 Abs. 1).

Inhalt
Die Masterarbeit ist eine eigenständige, schriftliche Arbeit und beinhaltet die theoretische oder experimentelle Bearbeitung einer komplexen Problemstellung aus einem Teilbereich des Bauwesens nach wissenschaftlichen Methoden. Der thematische Inhalt der Masterarbeit ergibt sich durch die Wahl des Fachgebiets, in dem die Arbeit angefertigt wird. Der/Die Studierende darf Vorschläge für die Themenstellung einbringen.

Empfehlungen
Alle notwendigen fachlichen und über-fachlichen Qualifikationen zur Bearbeitung des gewählten Themas und der Anfertigung der Masterarbeit sollten erlangt worden sein.

Anmerkungen
Informationen zum Vorgehen bzgl. Zulassung und Anmeldung der Masterarbeit siehe Kap. 1.2.5.

Arbeitsaufwand
- Bearbeitung der Aufgabenstellung: 720 Std.
- Verfassen der Masterarbeit: 150 Std.
- Vorbereitung des Vortrags: 30 Std.

Summe: 900 Std.
Verantwortung: Prof. Dr. Philipp Blum
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
Profilstudium / Water Resources Engineering (Supplementary Modules)

Leistungspunkte 4
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 2

Pflichtbestandteile
T-BGU-106803 Thermal Use of Groundwater 4 LP Blum

Erfolgskontrolle(n)
- Teilleistung T-BGU-106803 mit mündlicher Prüfung Art nach § 4 Abs. 2 Nr. 2

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele
Students get familiar with the topic ‘Thermal Use of Groundwater’ and will be able to integrate their knowledge in particular in an urban water energy nexus. They get knowledge about the fundamentals of thermal transport in groundwater and their application to shallow geothermal systems such as ground source and groundwater heat pump systems. Hence, analytical and numerical simulations will be performed using Excel and Matlab scripted codes. They will be able to perform their own simulations and will be able to design shallow geothermal systems in context of the water energy nexus.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
The content of this module is mainly based on the textbook on ‘Thermal Use of Shallow Groundwater’ and is therefore structured as follows:
- Fundamentals (theory of heat transport in the subsurface)
- Analytical solutions for closed and open systems
- Numerical solutions for shallow geothermal systems
- Long-term operability and sustainability
- Field methods such as thermal tracer tests and thermal response tests (TRT)
- Case studies and applications

Analytical simulations are performed using Excel and Matlab scripted codes. In addition, calibration and validation exercises are performed using existing field and monitoring data. Finally, the students are actively planning an own geothermal system from the application up to the long-term performance of such a system. Hence, a final planning report should be written.

Empfehlungen
Vorkenntnisse in der Programmierung mit Matlab; ansonsten wird dringend empfohlen, am Kurs "Einführung in Matlab" (6224907) teilzunehmen.
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
 • Vorlesung/Übung: 30 Std.

Selbststudium:
 • Vor- und Nachbereitung Vorlesung/Übungen: 40 Std.
 • Prüfungsvorbereitung: 50 Std.

Summe: 120 Std.

Literatur
Other documents such as recent publications are made available on ILIAS
4.60 Modul: Erdbau und Erddammbau (WSEM-SM961) [M-BGU-103402]

Verantwortung: Prof. Dr.-Ing. Theodoros Triantafyllidis

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
- Profilstudium / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-BGU-106792 | Erdbau und Erddammbau | 6 LP | Bieberstein |

Erfolgskontrolle(n)
- Teilleistung T-BGU-106792 mit mündlicher Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

Im Blick auf geotechnische Konstruktionen im Erd- und Dammbau sind die Studierenden im Stande, für durchschnittlich komplexe Anforderungen geeignete Methoden zur Erkundung, Modellbildung, Dimensionierung, Ausführung und Kontrolle ingenieurmäßig auszuwählen und anzuwenden. Sie können dieses Wissen anwenden, um alle bei Dämmen auftretenden geotechnisch relevanten Fragestellungen zu identifizieren und Entwurfs- und Bemessungsregeln in Grundzügen selbständig anwenden. Sie sind in der Lage, für dammbautypische Problemstellungen eigene Lösungsansätze zu entwickeln, Bauverfahren zu beurteilen und die geforderten geotechnischen Nachweise zu führen.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine
Inhalt
Grundlagen des Erd- und Dammbaus:

- Quer- und Längsprofil von Schüttdämmen
- Gestaltungserfordernisse des Querschnitts
- Dichtungen
- Zusammenwirken Damm-Untergrund
- Bauweisen zur Untergrundabriegelung
- Dammabaustoffe mit Anforderungen und Eigenschaften
- Herstellung von Dämmen
- Sickerströmung und Sickenetze
- Strömungsverhältnisse mit bekannter und unbekannter Berandung
- Erosion, Suffosion, Piping, Kolmation und Fugenerosion
- Standsicherheit von Dämmen

Erddammbau:

- hydrologische und hydraulische Bemessung von Stauanlagen
- Vorschriften für Stauanlagen und Deiche
- Freibordbemessung
- Standsicherheitskonzepte
- Gleitsicherheitsnachweis bei Dämmen
- Auftriebssicherheit
- Spannungsverteilung in der Sohle
- Spreizsicherheit
- Setzungen
- hydraulische Sicherheit
- Erosionskriterien, Nachweis der inneren Erosionsstabilität
- Filter, Dräns, Untergrundabdichtung
- Verformung von Dämmen, Risssicherheit, Erdbebenbemessung
- Messungen an Dämmen
- Eingebettete Bauwerke und Nebenbauwerke
- Überströmbarkeit von Dämmen und Deiche

Empfehlungen
keine

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Grundlagen des Erd- und Dammbaus Vorlesung/Übung: 30 Std.
- Erddammbau Vorlesung/Übung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesung/Übungen Grundlagen des Erd- und Dammbaus: 30 Std.
- Vor- und Nachbereitung Vorlesung/Übungen Erddammbaustoffe: 30 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.
4.61 Modul: Umweltgeotechnik (WSEM-SM962) [M-BGU-100079]

Verantwortung: N.N.

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
- Profilstudium / Water Resources Engineering (Supplementary Modules)

Leistungspunkte
- 6

Turnus
- Jedes Wintersemester

Dauer
- 1 Semester

Sprache
- Deutsch

Level
- 4

Version
- 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modultitel</th>
<th>Leistungspunkte (LP)</th>
<th>Termin</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100084</td>
<td>Übertagedeponien</td>
<td>3</td>
<td>Bieberstein</td>
</tr>
<tr>
<td>T-BGU-100089</td>
<td>Altlasten - Untersuchung, Bewertung und Sanierung</td>
<td>3</td>
<td>Bieberstein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-100084 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2
- Teilleistung T-BGU-100089 mit einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele

Zusammensetzung der Modulnote

Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Voraussetzungen

keine

Inhalt

Empfehlungen

keine

Anmerkungen

keine
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Übertagedeponien Vorlesung/Übung: 30 Std.
- Altlasten - Untersuchung, Bewertung und Sanierung Vorlesung: 30 Std.
- Exkursionen: 10 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesung/Übungen Übertagedeponien: 25 Std.
- Prüfungsvorbereitung Übertagedeponien (Teilprüfung): 30 Std.
- Vor- und Nachbereitung Vorlesungen Altlasten - Untersuchung, Bewertung und Sanierung: 25 Std.
- Prüfungsvorbereitung Altlasten - Untersuchung, Bewertung und Sanierung (Teilprüfung): 30 Std.

Summe: 180 Std.

Literatur
DGGT, GDA-Empfehlungen – Geotechnik der Deponien und Altlasten, Ernst und Sohn, Berlin
Drescher (1997), Deponiebau, Ernst und Sohn, Berlin
Reiersloh, D und Reinhard, M. (2010): Altlastenratgeber für die Praxis, Vulkan-V. Essen
4.62 Modul: Allgemeine Meteorologie (WSEM-SM971) [M-PHYS-103732]

Verantwortung: Prof. Dr. Christoph Kottmeier
Prof. Dr. Michael Kunz

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
- Profilstudium / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-101091 | Allgemeine Meteorologie | 6 LP | Kottmeier, Kunz |

Erfolgskontrolle(n)
- Teilleistung T-PHYS-101091 mit unbenoteter Studienleistung nach § 4 Abs. 3

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Zusammensetzung der Modulnote
unbenotet

Voraussetzungen
keine

Empfehlungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung, Übung: 75 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen, Übungen: 55 Std.
- Ausarbeitung der vorzurechnenden Übung: 20 Std.
- Testvorbereitung: 30 Std.

Summe: 180 Std.
4.63 Modul: Meteorologische Naturgefahren und Klimawandel (WSEM-SM972) [M-PHYS-103386]

Verantwortung: Prof. Dr. Peter Knippertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
 Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
 Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
 Profilstudium / Water Resources Engineering (Supplementary Modules)

Leistungspunkte 6
Turnus Jedes Semester
Dauer 2 Semester
Sprache Englisch
Level 4
Version 2

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-107713</td>
<td>Examination on Seminar IPCC Assessment Report</td>
<td>3 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-109140</td>
<td>Meteorological Hazards</td>
<td>1 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-109979</td>
<td>Examination on Meteorological Hazards</td>
<td>2 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-PHYS-109140 mit unbenoteter Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-PHYS-109979 mit mündlicher Prüfung nach § 4 Abs. 2 Nr. 2
- Teilleistung T-PHYS-107713 mit Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele
The students are able to professionally present and critically discuss causes of climate change. They can use climate and weather data or forecasts to estimate the potential for extreme events and their effects by region and season. In addition, they can expertly present and discuss learned or self-developed scientific findings.

Zusammensetzung der Modulnote
Modulnote ist nach Leistungspunkten gewichtetes Mittel aus den Noten der Teilprüfungen

Voraussetzungen
keine

Inhalt
Meteorological natural hazards:
Extreme events, extratropical and tropical cyclones, convection, thunderstorms, supercells, tornadoes, convective storm gusts, derechos, hail, climate change and extreme event

Seminar on IPCC Assessment Report:
Causes of climate change: External and internal factors influencing the climate, radiation effect and the importance of greenhouse gases, results of model projections of the global climate
Systematic review based on the current progress report of the Intergovernmental Panel on Climate Change: structuring of the IPCC process, background to the origin of the report, lectures on sub-aspects and discussion

Empfehlungen
Grundkenntnisse in Meteorologie, z.B. Modul "Allgemeine Meteorologie (SM971)", und über das Klimasystem
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Seminar on IPCC Assessment Report: 30 Std.
- Meteorologische Naturgefahren Vorlesung: 30 Std.

Selbststudium:
- Vor- und Nachbereitung Seminar on IPCC Assessment Report: 30 Std.
- Vorbereitung des Vortrags Seminar on IPCC Assessment Report (Teilprüfung): 30 Std.
- Vor- und Nachbereitung Vorlesungen Meteorologische Naturgefahren: 30 Std.
- Prüfungsvorbereitung Meteorologische Naturgefahren (Teilprüfung): 30 Std.

Summe: 180 Std.
4.64 Modul: Angewandte Meteorologie: Turbulente Ausbreitung (WSEM-SM973) [M-PHYS-103387]

Verantwortung: Prof. Dr. Peter Knippertz
Dr. Bernhard Vogel
Dr. Heike Vogel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Profilstudium / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profilstudium / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profilstudium / Environmental System Dynamics & Management (Supplementary Modules)
Profilstudium / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1 Semester</td>
<td></td>
<td>Englisch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-108610 | Turbulent Diffusion | 2 LP Kunz |
| T-PHYS-109981 | Examination on Turbulent Diffusion | 4 LP Vogel |

Erfolgskontrolle(n)
- Teilleistung T-PHYS-108610 mit unbenoteter Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-PHYS-109981 mit mündlicher Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Qualifikationsziele
Die Studierenden können wesentliche Aspekte der Ausbreitung von Luftbeimengungen fachgerecht erläutern. Sie sind in der Lage, die zugrunde liegende Prozesse qualitativ und quantitativ zu beschreiben und aus Wetterinformationen Auswirkungen auf die Ausbreitung von Luftbeimengungen abzuleiten.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt
Ausbreitung von Luftbeimengungen:
- relevante Spurengase
- Tagesgänge von Emissionen und Konzentrationen
- Temperaturverlauf und Bewegungsvorgänge in der unteren Atmosphäre
- turbulente Diffusion
- Turbulenzparametrisierung
- chemische Umwandlungsvorgänge
- numerische Modelle

Empfehlungen
Grundkenntnisse in Meteorologie, z.B. Modul "Allgemeine Meteorologie (SM971)"
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Turbulent Diffusion Vorlesung, Übungen: 45 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen, Übungen Turbulent Diffusion, inkl. Bearbeitung einer Simulationsaufgabe (Prüfungsvorleistung): 105 Std.
- Prüfungsvorbereitung: 30 Std.

Summe: 180 Std.
4.65 Modul: Study Project (WSEM-SP111) [M-BGU-103439]

Verantwortung: Ph.D. Luca Trevisan
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Study Project

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-BGU-106839 | Study Project | 15 LP Trevisan |

Erfolgskontrolle(n)
- Teilleistung T-BGU-106839 mit Prüfungsleistung anderer Art nach SPO § 4 Abs. 2 Nr. 3
Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Qualifikationsziele
Die Studierenden sind in der Lage eine interdisziplinäre, wasserbezogene Projektarbeit mit wissenschaftlichen Methoden zu bearbeiten. Sie können die Bearbeitung einer Problemstellung unter Anleitung planen, strukturieren, vorbereiten, durchführen und schriftlich wie mündlich dokumentieren. Dabei wählen sie adäquate Methoden für eine lösungsorientierte Bearbeitung der Fragestellung aus.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
keine

Inhalt

Die Projektarbeit kann auch in Studierendenteams bearbeitet werden. In diesem Fall bearbeiten die Studierenden jeweils einen Aspekt einer übergeordneten Team-Fragestellung z. B. im Rahmen eines Verbundprojektes.

Die Studierenden können Vorschläge für die Themenstellung einbringen.

Es ist möglich, die Projektarbeit im Rahmen einer Kooperation mit einer externen Forschungseinrichtung oder einer Institution aus dem berufspraktischen Umfeld anzufertigen.

Empfehlungen
Alle fachlichen und überfachlichen Qualifikationen zur Bearbeitung des gewählten Themas und der Anfertigung des "Study Project" sollten erlangt worden sein.

Anmerkungen
keine

Arbeitsaufwand
Bearbeitungsdauer ca. 3 Monate
5.1 Teilleistung: Advanced Fluid Mechanics [T-BGU-106612]

Verantwortung: Prof. Dr. Olivier Eiff

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-103359 - Advanced Fluid Mechanics

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 6221701 | Advanced Fluid Mechanics | 4 SWS | Vorlesung / Übung (VÜ) | Eiff |

Erfolgskontrolle(n)
schriftliche Prüfung, 90 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.2 Teilleistung: Allgemeine Meteorologie [T-PHYS-101091]

Verantwortung: Prof. Dr. Christoph Kottmeier
Prof. Dr. Michael Kunz

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103732 - Allgemeine Meteorologie

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 4051011</td>
<td>Allgemeine Meteorologie 3 SWS Vorlesung (V) Kunz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 4051012</td>
<td>Übungen zur Allgemeinen Meteorologie 2 SWS Übung (Ü) Kunz, Maurer, Hauser</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Vorrechnen einer Übungsaufgabe und Test (unbeotet)

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.3 Teilleistung: Altlasten - Untersuchung, Bewertung und Sanierung [T-BGU-100089]

Verantwortung: Dr.-Ing. Andreas Bieberstein
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-100079 - Umweltgeotechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 3
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungstagung</th>
<th>Vorlesungsbesprechung</th>
<th>Praktikum</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Altlasten - Untersuchung, Bewertung und Sanierung</td>
<td>6251915</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung, ca. 20 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Altlasten - Untersuchung, Bewertung und Sanierung
6251915, WS 19/20, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Lehrinhalt

· Schadstoffe und Schadstoffverhalten in der Umwelt
· Umweltchemische und mineralogische Aspekte bei der Schadstoffakkumulation im Boden
· Natural Attenuation und aktive mikrobiologische Sanierungsverfahren
· Reaktive Wände und elektrokinetische Sanierungsverfahren
· Bodenwäsche, Verbrennung, Pyrolyse
· Immobilisierung und Verfestigung, Geotechnische Aspekte bei der Einkapselung von Industriemülldeponien
· Hydraulische und pneumatische Sanierungsverfahren
· Nachhaltigkeit bei der Altlastensanierung
· Fallbeispiele aus der Praxis, Exkursion.

Literatur
Reiersloh, D und Reinhard, M. (2010): Altlastenratgeber für die Praxis, Vulkan-V. Essen
5.4 Teilleistung: Analysis of Turbulent Flows [T-BGU-103561]

Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103363 - Analysis of Turbulent Flows

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 6
Turnus: Jedes Semester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsname</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6221806</td>
<td>Fluid Mechanics of Turbulent Flows</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>6221911</td>
<td>Modelling of Turbulent Flows - RANS and LES</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Uhlmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, ca. 45 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.5 Teilleistung: Applied Ecology and Water Quality [T-BGU-109956]

Verantwortung: Dr.-Ing. Stephan Fuchs
Dr.-Ing. Stephan Hilgert

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-104922 - Freshwater Ecology

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 6223813 | Applied Ecology and Water Quality | 3 SWS | Seminar (S) | Fuchs, Hilgert |

Erfolgskontrolle(n)

schriftliche Ausarbeitung, ca. 8-15 Seiten, und
Präsentation, ca. 15 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

5.6 Teilleistung: Biofilm Systems [T-CIWVT-106841]

Verantwortung: Prof. Dr. Harald Horn
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-CIWVT-103441 - Biofilm Systems

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 22617 | Biofilm Systems | 2 SWS | Vorlesung (V) | Horn, Gescher, Hille-Reichel, Wagner |

Erfolgskontrolle(n)
mündliche Prüfung, ca. 20 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.7 Teilleistung: Booklet Integrated Infrastructure Planning [T-BGU-106763]

Verantwortung: Dr. Charlotte Kämpf
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103380 - Integrated Infrastructure Planning

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6224910</td>
<td>Kämpf, Walz</td>
<td>Infrastructure Planning – Socio-economic & Ecological Aspects</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Booklet; DIN A5, ca. 15 Seiten

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
5.8 Teilleistung: Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen [T-BGU-101681]

Verantwortung: Dr.-Ing. Norbert Rösch
Dr.-Ing. Sven Wursthorn

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-101846 - Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Kursbezeichnung</th>
<th>SWS</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6071101</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, V/Ü</td>
<td>4</td>
<td>Rösch, Wursthorn</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftlichen Prüfung, 90 min.

Voraussetzungen
Online-Test "Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung" (T-BGU-103541) muss bestanden sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Empfehlungen
keine

Anmerkungen
keine
5.9 Teilleistung: Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung [T-BGU-103541]

Verantwortung: Dr.-Ing. Norbert Rösch
Dr.-Ing. Sven Wursthorn

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-101846 - Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungscode</th>
<th>Unterrichtszeit</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6071101</td>
<td>4 SWS Vorlesung / Übung (VÜ)</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>Rösch, Wursthorn</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Online-Test

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
5.10 Teilleistung: Energiewasserbau [T-BGU-100139]

Verantwortung: Dr.-Ing. Peter Oberle
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-100103 - Energiewasserbau

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
6

Turnus
Jedes Semester

Version
1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6222801</td>
<td>Energiewasserbau</td>
<td>4 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, ca. 20 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Energiewasserbau
6222801, SS 2019, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)

Lehrinhalt
- politische Rahmenbedingungen (EEG)
- Ökologische Anforderungen
- Turbinentechnik und elektronische Aspekte
- Konstruktive Merkmale von Wasserkraftanlagen
- Planung und Bemessung von Wasserkraftanlagen
- Vorlesungsbegleitende Exkursionen und Projektbeispiele

Arbeitsaufwand
Präsenzzeit: 60h
Vor-/Nachbereitung: 60h
Prüfung + Prüfungsvorbereitung: 60h

Literatur
Giesecke J., Mosonyi E., 2005, Wasserkraftanlagen, Planung, Bau und Betrieb
5 TEILLEISTUNGEN

5.11 Teilleistung: Environmental Biotechnology [T-CIWVT-106835]

Verantwortung: Andreas Tiehm
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-CIWVT-103436 - Applied Microbiology

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Version: 2

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.12 Teilleistung: Environmental Fluid Mechanics [T-BGU-106767]

Verantwortung: Prof. Dr. Olivier Eiff
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103383 - Environmental Fluid Mechanics

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsbetrieb</th>
<th>Voraussetzungen</th>
<th>Empfehlungen</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6221909</td>
<td>Environmental Fluid Mechanics</td>
<td>4 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung, 90 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.13 Teilleistung: Erdbau und Erddammbau [T-BGU-106792]

Verantwortung: Dr.-Ing. Andreas Bieberstein
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103402 - Erdbau und Erddammbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Lehrveranstaltungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6251816</td>
<td>Erddammbau</td>
<td>2</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Bieberstein</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>6251703</td>
<td>Grundlagen des Erd- und Dammbaus</td>
<td>2</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Bieberstein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, ca. 40 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Erddammbau
6251816, SS 2019, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)

Lehrinhalt
- Hydrologische und hydraulische Bemessung von Dämmen
- Regelwerke für Dämme und Deiche
- Freibord
- Böschungsstandsicherheit
- Gleitsicherheit in der Aufstandsfläche
- Auftriebssicherheit
- Sohlspannungsverteilung in der Aufstandsfläche
- Spreizsicherheit
- Setzungen
- Hydraulische Stabilität
- Sickerströmung und Strömungsnetzkonstruktion
- Sickerlinienbestimmung
- Kriterien und Nachweise der inneren Erosion
- Filter und Dränageszonen
- Untergrundabdichtung
- Verformungen in Dämmen und Deichen
- Fehlstellenanalyse
- Erdbebenachweise
- Messüberwachung bei Dämmen
- Einbauten
- Oberflächendichtringen
- Überströmbare Dämme
Literatur

Vorlesung / Übung (VÜ)

<table>
<thead>
<tr>
<th>Grundlagen des Erd- und Dammhausb</th>
<th>6251703, WS 19/20, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
</table>

Lehrinhalt
- Quer- und Längsprofil von Schüttdämmen
- Gestaltungserfordernisse des Dammquerschnitts
- Bauweisen von Dichtungen
- Zusammenwirken von Damm und Untergrund
- Bauweisen zur Untergrundabriegelung
- Dammbaustoffe mit Anforderungen und Eigenschaften
- Herstellung von Dämmen
- Sickerströmung und Sickenetze
- Strömungsfälle mit fester Berandung und freier Oberfläche
- Erosion, Suffosion, Piping, Kolmation und Fugenerosion
- Standsicherheit von Dämmen.

Literatur
Striegler (1998), Dammbau in Theorie und Praxis, Verlag für Bauwesen Berlin
Kutzner (1996), Erd- und Steinschüttdämme für Stauanlagen, Enke Verlag Stuttgart
5.14 Teilleistung: Examination on Meteorological Hazards [T-PHYS-109979]

Verantwortung:
Prof. Dr. Michael Kunz

Einrichtung:
KIT-Fakultät für Physik

Bestandteil von:
M-PHYS-103386 - Meteorologische Naturgefahren und Klimawandel

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung, ca. 30 min.

Voraussetzungen

Die Studienleistung "Meteorological Hazards" (T-PHYS-109140) muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-101557 - Meteorologische Naturgefahren muss erfolgreich abgeschlossen worden sein.

Empfehlungen

keine

Anmerkungen

keine
5.15 Teilleistung: Examination on Seminar IPCC Assessment Report [T-PHYS-107713]

Verantwortung: Prof. Dr. Joaquim José Ginete Werner Pinto
 Prof. Dr. Corinna Hoose

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103386 - Meteorologische Naturgefahren und Klimawandel

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 3
Turnus: Jedes Wintersemester
Version: 2

Erfolgskontrolle(n)
Presentation eines Kapitels des aktuellen IPCC-Reports, ca. 20-25 min., mit nachfolgender Diskussion und Abgabe einer etwa einseitigen Zusammenfassung

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.16 Teilleistung: Examination on Turbulent Diffusion [T-PHYS-109981]

Verantwortung: Dr. Bernhard Vogel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103387 - Angewandte Meteorologie: Turbulente Ausbreitung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Übung (Ü)</th>
<th>Vorlesung (V)</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4052081</td>
<td>Turbulent Diffusion</td>
<td>2</td>
<td></td>
<td></td>
<td>Vogel, Vogel</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4052082</td>
<td>Exercises to Turbulent Diffusion</td>
<td>1</td>
<td>Übung (Ü)</td>
<td></td>
<td>Vogel, Vogel, Muser</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min.

Voraussetzungen
Die Studienleistung "Turbulent Diffusion" (T-PHYS-108610) muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-108610 - Turbulent Diffusion muss erfolgreich abgeschlossen worden sein.

Empfehlungen
keine

Anmerkungen
keine

Verantwortung: Dr. Gudrun Abbt-Braun
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-CIWVT-103413 - Membrane Technologies and Excursions

Erfolgskontrolle(n)
Teilnahme an den Exkursionen

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.18 Teilleistung: Experiments in Fluid Mechanics [T-BGU-106760]

Verantwortung: Prof. Dr. Olivier Eiff
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103377 - Experiments in Fluid Mechanics

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 6221802 | Experiments in Fluid Mechanics | 4 SWS | Vorlesung / Übung (VÜ) | Eiff, Mitarbeiter/innen |

Erfolgskontrolle(n)
Laborberichte mit Auswertungen der physikalischen Experimente in Kleingruppen, je ca. 10 Seiten inklusive Abbildungen und Tabellen, und mündliche Prüfung, ca. 30 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.19 Teilleistung: Field Training Water Quality [T-BGU-109957]

Verantwortung:
Dr.-Ing. Stephan Fuchs
Dr.-Ing. Stephan Hilgert

Einrichtung:
KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
M-BGU-104922 - Freshwater Ecology

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Sommersemester</td>
<td>3</td>
<td>Fuchs, Hilgert</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>6223814</th>
<th>Field Training Water Quality</th>
<th>1 SWS</th>
<th>Übung (Ü)</th>
<th>Fuchs, Hilgert</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Bericht mit Präsentation, ca. 8-15 Seiten

Voraussetzungen
Die Teilleistung Applied Ecology and Water Quality (T-BGU-109956, Seminarbeitrag mit Vortrag) muss begonnen sein, d.h. mindestens die Anmeldung zur Prüfung muss erfolgt sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Empfehlungen
keine

Anmerkungen
5.20 Teilleistung: Flow and Sediment Dynamics in Rivers [T-BGU-108467]

Verantwortung: Prof. Dr. Franz Nestmann

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-104083 - Flow and Sediment Dynamics in Rivers

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 6222805</td>
<td>Morphodynamics</td>
<td>2 SWS</td>
<td>Nestmann</td>
</tr>
<tr>
<td>SS 2019 6222807</td>
<td>Flow Behavior of Rivers</td>
<td>2 SWS</td>
<td>Seidel, Eiff, Dupuis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min.

Voraussetzungen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Empfehlungen
keine

Anmerkungen
keine
5.21 Teilleistung: Flow Measurement Techniques [T-BGU-110411]

Verantwortung: Dr.-Ing. Christof-Bernhard Gromke
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103388 - Versuchswesen und Strömungsmesstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Jedes Semester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 6221907 | Flow Measurement Techniques | 2 SWS | Vorlesung / Übung (VÜ) | Gromke |

Erfolgskontrolle(n)

mündliche Prüfung, ca. 30 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
5.22 Teilleistung: Fluss- und Auenökologie [T-BGU-106777]

Verantwortung: Prof. Dr. Florian Wittmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103391 - Management von Fluss- und Auenökosystemen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 6111231 | Fluss- und Auenökologie | 2 SWS | Vorlesung (V) | Wittmann |

Erfolgskontrolle(n)

schriftliche Prüfung, 90 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
5.23 Teilleistung: Fundamentals of Numerical Algorithms for Engineers [T-BGU-109953]

Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-104920 - Fundamentals of Numerical Algorithms for Engineers

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 6221912</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung, 60 min.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Keine
5.24 Teilleistung: Fundamentals of Water Quality [T-CIWVT-106838]

Verantwortung: Dr. Gudrun Abbt-Braun
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-CIWVT-103438 - Fundamentals of Water Quality

Erfolgskontrolle(n)
Schriftliche Prüfung, 90 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.25 Teilleistung: Geodateninfrastrukturen und Web-Dienste [T-BGU-101756]

Verantwortung: Prof. Dr.-Ing. Stefan Hinz
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101044 - Geodateninfrastrukturen und Web-Dienste

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 6026204 | Geodateninfrastrukturen und Webdienste | 1 SWS | Vorlesung (V) | Wursthorn |

Erfolgskontrolle(n)
mündliche Prüfung, ca. 20 min.

Voraussetzungen
Die Studienleistung "Geodateninfrastrukturen und Web-Dienste, Vorleistung" (T-BGU-101757) muss bestanden sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-101757 - Geodateninfrastrukturen und Web-Dienste, Vorleistung muss erfolgreich abgeschlossen worden sein.

Empfehlungen
keine

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Geodateninfrastrukturen und Webdienste

6026204, SS 2019, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Bemerkungen
Der Termin steht noch nicht fest. Bitte folgen Sie dem Link zur Terminumfrage unter http://www.ipf.kit.edu/mitarbeiter_wursthorn_sven.php
5 TEILLEISTUNGEN

5.26 Teilleistung: Geodateninfrastrukturen und Web-Dienste, Vorleistung [T-BGU-101757]

Verantwortung: Prof. Dr.-Ing. Stefan Hinz
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101044 - Geodateninfrastrukturen und Web-Dienste

Lehrveranstaltungen

| SS 2019 | 6026204 | Geodateninfrastrukturen und Webdienste | 1 SWS | Vorlesung (V) | Wursthorn |

Erfolgskontrolle(n)
Bearbeitung der Übungsaufgaben

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Geodateninfrastrukturen und Webdienste
6026204, SS 2019, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Bemerkungen
Der Termin steht noch nicht fest. Bitte folgen Sie dem Link zur Terminumfrage unter http://www.ipf.kit.edu/mitarbeiter_wursthorn_sven.php
5.27 Teilleistung: Geostatistics [T-BGU-106605]

Verantwortung: Prof. Dr.-Ing. Erwin Zehe
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103762 - Analysis of Spatial Data

<table>
<thead>
<tr>
<th>Teilleistungsform</th>
<th>Prüfungsleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Jedes Semester</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Präsenzgruppe</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6224805</td>
<td>Geostatistics</td>
<td>4</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Zehe, Ehret</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung, ca. 30 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
5.28 Teilleistung: Gewässerlandschaften [T-BGU-106789]

Verantwortung: Dr. Charlotte Kämpf
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103400 - Gewässerlandschaften

Erfolgskontrolle(n)
zur einem selbst gewählten Thema:
Vortrag, ca. 15–20 min.,
Manuskript, ca. 4000 Worte, und
Poster DIN A1

Voraussetzungen
Die Studienleistung "Prüfungsvorleistung Gewässerlandschaften" (T-BGU-106788) muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-106788 - Prüfungsvorleistung Gewässerlandschaften muss erfolgreich abgeschlossen worden sein.

Empfehlungen
keine

Anmerkungen
keine
5.29 Teilleistung: Groundwater Flow around Structures [T-BGU-106774]

Verantwortung: Ph.D. Luca Trevisan
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103389 - Hydraulic Structures

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsteilung mündlich</td>
<td>3</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 6221815 Groundwater Flow around Structures 2 SWS Vorlesung / Übung (VÜ) Trevisan</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.30 Teilleistung: Groundwater Hydraulics [T-BGU-100624]

Verantwortung: Dr. Ulf Mohrlok
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-100340 - Groundwater Management

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 6221801</td>
<td>Groundwater Hydraulics 2 SWS Vorlesung (V) Mohrlok</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, ca. 20 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Groundwater Hydraulics
6221801, SS 2019, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Bemerkungen

Zielgruppe:
Studierende der Studiengänge Bauingenieurwesen M.Sc., Water Science and Engineering M.Sc., Interessierte am Thema Grundwasser

Lernziele:

behandelte Themen:
- strömungsmechanische Prozesse in porösen Medien
- Grundwasserströmungen: regional, Potenzialströmungen, Brunnenströmungen
- Prozesse der Grundwasserneubildung
- Stofftransportvorgänge
- Grundwassermanagement: Brunneneinzugsgebiete, Schutzzonen, Grundwasserverunreinigung, Salzwasserintrusion

Lehrinhalt
- strömungsmechanische Prozesse in porösen Medien
- Grundwasserströmungen: regional, Potenzialströmungen, Brunnenströmungen
- Prozesse der Grundwasserneubildung
- Stofftransportvorgänge
- Grundwassermanagement: Brunneneinzugsgebiete, Schutzzonen, Grundwasserverunreinigung, Salzwasserintrusion
Literatur
5.31 Teilleistung: Homework 'Introduction to Environmental Data Analysis and Statistical Learning' [T-BGU-109950]

Verantwortung: Dr.-Ing. Uwe Ehret
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-104880 - Introduction to Environmental Data Analysis and Statistical Learning

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 6224908 | Introduction to Environmental Data Analysis and Statistical Learning | 2 SWS | Vorlesung / Übung (VÜ) | Ehret |

Erfolgskontrolle(n)

veranstaltungsbegleitende Hausaufgaben, Kurzberichte je ca. 1 Seite

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
5.32 Teilleistung: Hydraulic Engineering [T-BGU-106759]

Verantwortung: Prof. Dr. Franz Nestmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103376 - Hydraulic Engineering

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 6
Turnus Jedes Semester
Version 1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>SS 2019</th>
<th>6222701</th>
<th>Multiphase Flow in Hydraulic Engineering</th>
<th>2 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Nestmann</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SS 2019</td>
<td>6222703</td>
<td>Design of Hydraulic Structures</td>
<td>2 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Nestmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 75 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.33 Teilleistung: Hydrogeologie: Gelände- und Labormethoden [T-BGU-104834]

Verantwortung: Dr. rer. nat. Nadine Göppert
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-102441 - Hydrogeologie: Gelände- und Labormethoden

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsbeschreibung</th>
<th>SWS</th>
<th>Übung (Ü)</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6310412</td>
<td>Gelände- und Laborübungen/Field and Laboratory Exercises</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Göppert, Liesch</td>
</tr>
<tr>
<td>SS 2019</td>
<td>6310414</td>
<td>Vorbereitendes Seminar/Preparatory Workshop</td>
<td>1 SWS</td>
<td>Seminar (S)</td>
<td>Göppert, Liesch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Präsentation während des "Vorbereitendes Seminars" und schriftliche Ausarbeitung über die Ergebnisse der "Gelände- und Laborübungen"

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.34 Teilleistung: Hydrogeologie: Grundwassermodellierung [T-BGU-104757]

Verantwortung: Dr. Tanja Liesch
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-102439 - Hydrogeologie: Grundwassermodellierung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen			
WS 19/20 6339113	Grundwassermodellierung	2 SWS	Vorlesung (V) Liesch, Schäfer
WS 19/20 6339114	Übung zu Grundwassermodellierung	2 SWS	Übung (Ü) Liesch, Schäfer

Erfolgskontrolle(n)
Schriftliche Ausarbeitung und Präsentation

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.35 Teilleistung: Hydrogeologie: Karst und Isotope [T-BGU-104758]

Verantwortung: Prof. Dr. Nico Goldscheider
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-102440 - Hydrogeologie: Karst und Isotope

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Titel</th>
<th>SWS</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6310411</td>
<td>Isotopenmethoden in der Hydrogeologie / Isotope Methods in Hydrogeology</td>
<td>1 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>6339076</td>
<td>Karsthydrogeologie</td>
<td>2 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung, 90 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine

Water Science and Engineering Master 2016 (Master of Science (M.Sc.))
Modulhandbuch mit Stand vom 04.10.2019
167
5.36 Teilleistung: Hydrogeology [T-BGU-106801]

Verantwortung: Prof. Dr. Nico Goldscheider
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103406 - Hydrogeology

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Vorlesungscode</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6310415</td>
<td>Field Methods in Hydrogeology</td>
<td>1</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Liesch, Göppert</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung, 90 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
5.37 Teilleistung: Hydrological Measurements in Environmental Systems [T-BGU-106599]

Verantwortung: Dr. Jan Wienhöfer
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103371 - Experimental Hydrology
M-BGU-103763 - Hydrological Measurements in Environmental Systems

Lehrveranstaltungen

| SS 2019 | 6224807 | Hydrological Measurements in Environmental Systems | 4 SWS | Praktische Übung (PÜ) | Wienhöfer, Ehret |

Erfolgskontrolle(n)

Die Prüfungsleistung besteht aus den vier Teilen:

1. aktive Teilnahme am Seminar (Präsentation ~ 20 min)
2. aktive Teilnahme an Gelände- und Laborarbeiten
3. Dokumentation der Messungen (Bericht ~10 Seiten)
4. Analyse der erhobenen Daten (Präsentation ~20 min und Bericht ~10 Seiten)

Jeder Teil wird einzeln bepunktet; die Gesamtnote bestimmt sich aus der erreichten Gesamtpunktzahl. Bestanden hat, wer in jedem der vier Teile mind. 1 Punkt und in der Summe die Mindestpunktzahl erreicht hat.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.38 Teilleistung: Industrial Water Management [T-BGU-108448]

Verantwortung: Dr.-Ing. Tobias Morck
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-104073 - Industrial Water Management

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>5</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 6223810 | Industrial Water Management | 4 SWS | Vorlesung / Übung (VÜ) | Morck |

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min.

Voraussetzungen
Lab report "Industrial Water Management" muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Empfehlungen
keine

Anmerkungen
keine
5.39 Teilleistung: Instrumentelle Analytik [T-CIWVT-106837]

Verantwortung: Prof. Dr. Gisela Guthausen
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-CIWVT-103437 - Instrumental Analysis

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnus</td>
<td>Jedes Sommersemester</td>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2019 22942 Instrumentelle Analytik 2 SWS Vorlesung (V) Guthausen

Erfolgskontrolle(n)
mündliche Prüfung, 30 min.

Voraussetzungen
Die Studienleistung "Organic Trace Analysis of Aqueous Samples" (T-CIWVT-106836) muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-106836 - Organic Trace Analysis of Aqueous Samples muss erfolgreich abgeschlossen worden sein.

Empfehlungen
keine

Anmerkungen
keine
5 TEILLEISTUNGEN

5.40 Teilleistung: Integrated Infrastructure Planning [T-BGU-106764]

Verantwortung: Dr. Charlotte Kämpf
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103380 - Integrated Infrastructure Planning

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 6224910 | Infrastructure Planning – Socio-economic & Ecological Aspects | SWS | Vorlesung / Übung (VÜ) | Kämpf, Walz |

Erfolgskontrolle(n)

schriftliche Prüfung, 60 min.

Voraussetzungen

Die Studienleistung "Booklet Integrated Infrastructure Planning" (T-BGU-106763) muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Empfehlungen

keine

Anmerkungen

keine
5.41 Teilleistung: Interaction Flow - Hydraulic Structures [T-BGU-110404]

Verantwortung: Michael Gebhardt
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103389 - Hydraulic Structures

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Jedes Semester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsblock</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6221903</td>
<td>Interaction Flow - Hydraulic Structures</td>
<td>2</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Gebhardt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 60 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.42 Teilleistung: Introduction to Environmental Data Analysis and Statistical Learning [T-BGU-109949]

Verantwortung: Dr.-Ing. Uwe Ehret
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-104880 - Introduction to Environmental Data Analysis and Statistical Learning

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>schriftlich</td>
<td>4</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 6224908 | Introduction to Environmental Data Analysis and Statistical Learning | 2 SWS | Vorlesung / Übung (VÜ) | Ehret |

Erfolgskontrolle(n)
schriftliche Prüfung, 60 min.

Voraussetzungen

Die Studienleistung Homework 'Introduction to Environmental Data Analysis and Statistical Learning' (T-BGU-109265) muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-109950 - Homework 'Introduction to Environmental Data Analysis and Statistical Learning' muss erfolgreich abgeschlossen worden sein.

Empfehlungen
keine

Anmerkungen
keine
5.43 Teilleistung: Introduction to Matlab [T-BGU-106765]

Verantwortung: Dr.-Ing. Uwe Ehret
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103381 - Introduction to Matlab

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Lehrveranstaltungsform (VÜ)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>6224907</td>
<td>Introduction to Matlab</td>
<td>2</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Ehret, Wienhöfer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Erstellung eines Matlab-Programms mit Bericht, ca. 1 Seite

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Introduction to Matlab
6224907, WS 19/20, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Bemerkungen
• Allgemeine Programmiergrundlagen: Programmierstrategien, Programmstrukturierung, Kontrollstrukturen, Operatoren und Variablen, Funktionen und Objekte, Matrizenrechnung
• Matlab-Grundlagen: Historische Entwicklung, Installation, Graphische Nutzeroberfläche, Toolboxen, Nutzung der Hilfefunktionen
• Grundlegendes zur Programmierung mit Matlab: Syntax, Nutzung des Debuggers, Lesen und Schreiben von Dateien, Visualisierung von Daten

Arbeitsaufwand
Präsenzzeit: 30 h
Vor-/Nachbereitung: 10 h
Kursbegleitende Hausarbeiten: 30 h
Abschließende Hausarbeit: 20 h
5.44 Teilleistung: Lab report "Industrial Water Management" [T-BGU-109980]

Verantwortung: Dr.-Ing. Tobias Morck
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-104073 - Industrial Water Management

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>6223810</th>
<th>Industrial Water Management</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Morck</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Bericht zu Laborarbeit, ca. 10 Seiten, als Prüfungsvorleistung

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.45 Teilleistung: Management of Water Resources and River Basins
[T-BGU-106597]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Dr.-Ing. Uwe Ehret</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-BGU-103364 - Management of Water Resources and River Basins</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

| Lehrveranstaltungen |
| --- | --- | --- | --- |
| SS 2019 | 6224801 | Management of Water Resources and River Basins | 4 SWS |
| | | | Vorlesung / Übung (VÜ) |
| | | | Ehret |

Erfolgskontrolle(n)
veranstaltungsbegleitende Hausaufgaben, Kurzberichte je ca. 2 Seiten, und abschließende aufgabengeleitete Hausarbeit, ca. 15 Seiten, mit Kolloquium

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.46 Teilleistung: Mass Transfer and Reaction Kinetics [T-CIWVT-109913]

Verantwortung: Prof. Dr.-Ing. Nikolaos Zarzalis
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-CIWVT-104879 - Mass Transfer and Reaction Kinetics

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 22534 | Mass Transfer and Reaction Kinetics (ENTECH) | 2 SWS | Vorlesung (V) | Zarzalis |

Erfolgskontrolle(n)

schriftliche Prüfung, 150 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
5.47 Teilleistung: Masterarbeit [T-BGU-100093]

Verantwortung: Prof. Dr.-Ing. Peter Vortisch
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-100080 - Modul Masterarbeit

Erfolgskontrolle(n)
Bearbeitungsdauer ca. 6 Monate
Präsentation innerhalb eines Monats nach Abgabe der Masterarbeit

Voraussetzungen
definiert für das Modul Masterarbeit

Empfehlungen
s. Modul

Anmerkungen
keine
5.48 Teilleistung: Masterarbeit [T-BGU-110134]

Verantwortung: Prof. Dr.-Ing. Peter Vortisch
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-104995 - Modul Masterarbeit

Erfolgskontrolle(n)
Bearbeitungsdauer ca. 6 Monate
Präsentation innerhalb eines Monats nach Abgabe der Masterarbeit

Voraussetzungen
definiert für das Modul Masterarbeit

Abschlussarbeit
Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

- **Bearbeitungszeit**: 6 Monate
- **Maximale Verlängerungsfrist**: 3 Monate
- **Korrekturfrist**: 8 Wochen

Die Abschlussarbeit ist genehmigungspflichtig durch den Prüfungsausschuss.

Empfehlungen
s. Modul

Anmerkungen
Informationen zum Vorgehen bzgl. Zulassung und Anmeldung der Masterarbeit siehe Kap. 1.2.5.
5.49 Teilleistung: Membrane Technologies and Excursions [T-CIWVT-106819]

Verantwortung: Dr. Gudrun Abbt-Braun
Prof. Dr. Harald Horn
Dr.-Ing. Florencia Saravia

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103413 - Membrane Technologies and Excursions

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 22605 | Membrane Technologies in Water Treatment | 2 SWS | Vorlesung (V) | Horn, Saravia |

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min.

Voraussetzungen
Die Teilnahme an den Exkursionen ist Prüfungsvorleistung.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Empfehlungen
keine

Anmerkungen
keine
5.50 Teilleistung: Meteorological Hazards [T-PHYS-109140]

Verantwortung: Prof. Dr. Michael Kunz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103386 - Meteorologische Naturgefahren und Klimawandel

Erfolgskontrolle(n)
Teilnahme an Lehrveranstaltung als Prüfungsvorleistung

Voraussetzungen
keine

Empfehlungen
Knowledge from the module Introduction to Meteorology is required.

Anmerkungen
Keine
5.51 Teilleistung: Microbiology for Engineers [T-CIWVT-106834]

Verantwortung: Prof. Dr. Thomas Schwartz
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-CIWVT-103436 - Applied Microbiology

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnus</td>
<td>Jedes Sommersemester</td>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2019 22633 Microbiology for Engineers 2 SWS Vorlesung (V) Schwartz

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.52 Teilleistung: Mikrobielle Diversität [T-CHEMBIO-108674]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Johannes Gescher
Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften
Bestandteil von: M-CHEMBIO-100238 - Forschungsmodul: Mikrobielle Diversität

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art
Insgesamt können 100 Punkte erworben werden.

- ein Prüfungsteil erfolgt in Form eines schriftlichen Tests über 120 Minuten, zur Vorlesung und zu den Inhalten des Praktikums. Über diesen Prüfungsteil können 80 Punkte der Gesamtpunktzahl erreicht werden.
- Neben diesem schriftlichen Test muss ein Protokoll zum Praktikum erstellt werden, welches wissenschaftlichen Standards genügen muss. Für dieses Protokoll können 10 Punkte erlangt werden.
- Des weiteren muss die Arbeit des Praktikums in einem Vortrag innerhalb der jeweiligen Arbeitsgruppe in einem Vortrag vorgestellt werden. Für diesen Teil können ebenfalls 10 Punkte erworben werden.

Voraussetzungen
keine
5.53 Teilleistung: Modeling of Water and Environmental Systems [T-BGU-106757]

Verantwortung: Dr. Jan Wienhöfer
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103374 - Modeling of Water and Environmental Systems

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnumerierung</th>
<th>Vorlesungsbezeichnung</th>
<th>Vorlesungseinheit</th>
<th>Veranstalter/Leser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6220701</td>
<td>Modeling of Water and Environmental Systems</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

aufgabengeleitete Hausarbeit (schriftliche Beantwortung von Wissens- und Verständnisfragen zu den Inhalten der Vorlesungsreihe), ca. 10 Seiten

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
5.54 Teilleistung: Numerical Fluid Mechanics [T-BGU-106758]

Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103375 - Numerical Fluid Mechanics

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 6221702</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 90 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.55 Teilleistung: Numerical Fluid Mechanics II [T-BGU-106768]

Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103384 - Advanced Computational Fluid Dynamics

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6221809</td>
<td>Numerical Fluid Mechanics II</td>
<td>2 SWS</td>
<td>Vorlesung / Übung (VU)</td>
<td>Uhlmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min.

Voraussetzungen
Modul "Numerical Fluid Mechanics (AF501)" muss abgeschlossen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Empfehlungen
keine

Anmerkungen
keine
5.56 Teilleistung: Numerical Groundwater Modeling [T-BGU-100625]

Verantwortung: Dr. Ulf Mohrlok
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-100340 - Groundwater Management

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 3
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnr.</th>
<th>Vorlesungsname</th>
<th>Modul</th>
<th>ECTS</th>
<th>Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6221901</td>
<td>Numerical Groundwater Modelling</td>
<td>2 SWS</td>
<td>Projekt (PRO)</td>
<td>Mohrlok</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Bericht zur Projektarbeit, ca. 15 Seiten

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Numerical Groundwater Modelling
6221901, WS 19/20, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Bemerkungen

Zielgruppe:
Studierende der Studiengänge Bauingenieurwesen M.Sc., Water Science and Engineering M.Sc., Interessierte am Thema Grundwassermodellierung mit Vorkenntnissen

Lernziele:
Die Teilnehmer können für eine gegebene Aufgabenstellung unter Anleitung ein numerisches Grundwassermodell erstellen und ein gegebenes Szenario simulieren. Sie sind in der Lage, die wesentlichen Aspekte der Modellerstellung darzustellen. Sie können nach Anleitung die Simulationsergebnisse analysieren und deren Aussagekraft mit Hinblick auf die verwendeten numerischen Verfahren bewerten.

behandelte Themen:
- numerische Methoden
- Raum- und Zeitdiskretisierung
- Genauigkeit, Stabilität
- Bearbeitung einer Projektaufgabe

Lehrinhalt
- numerische Methoden
- Raum- und Zeitdiskretisierung
- Genauigkeit, Stabilität
- Bearbeitung einer Projektaufgabe
Literatur
5.57 Teilleistung: Numerische Mathematik für die Fachrichtung Informatik [T-MATH-102242]

Verantwortung: Prof. Dr. Andreas Rieder
Dr. Daniel Weiß
Prof. Dr. Christian Wieners

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-103404 - Numerische Mathematik für die Fachrichtungen Informatik und Ingenieurwesen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Semester</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 0187400</td>
<td>Numerische Mathematik für die Fachrichtungen Informatik und Ingenieurwesen</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>SS 2019 0187500</td>
<td>Übungen zu 0187400</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 120 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.58 Teilleistung: Numerische Strömungsmodellierung im Wasserbau

[T-BGU-106776]

Verantwortung: Dr.-Ing. Peter Oberle
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103390 - Numerische Strömungsmodellierung im Wasserbau

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Veranstaltung</th>
<th>WS 19/20</th>
<th>Vorlesung / Übung (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerische Strömungsmodellierung im Wasserbau</td>
<td>6222903</td>
<td>4 SWS</td>
<td>Oberle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, ca. 20 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Numerische Strömungsmodellierung im Wasserbau

6222903, WS 19/20, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Lehrinhalt
physikalische und numerische Grundlagen
Einsatzbereiche und Anwendungseinsbeispiele hydrodynamisch- numerischer (HN-)Verfahren
Geografische Informationssysteme (GIS)
Automatisierungstechnik mit HN-Verfahren
morphodynamische Verfahren
Übungen mit verschiedenen HN-Verfahren

Arbeitsaufwand
Präsenzzeit Vorlesung: 30 h
Präsenzzeit Übung: 30 h
Vor-/Nachbereitung: 60 h
Prüfung + Prüfungsvorbereitung: 60 h
5.59 Teilleistung: Ökosystemmanagement [T-BGU-106778]

Verantwortung: Dr. rer. nat. Christian Damm
 Prof. Dr. Florian Wittmann

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-103391 - Management von Fluss- und Auenökossystemen

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
3

Turnus
Jedes Sommersemester

Version
1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 6111234 Ökosystemmanagement 2 SWS Seminar (S) Damm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Vortrag, ca. 20-30 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.60 Teilleistung: Organic Trace Analysis of Aqueous Samples [T-CIWVT-106836]

Verantwortung: Dr. Gerald Brenner-Weiß
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-CIWVT-103437 - Instrumental Analysis

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 22629 | Organic Trace Analysis of Aqueous Samples | 2 SWS | Praktikum (P) | Brenner-Weiß |

Erfolgskontrolle(n)
Auswertung der im Laborpraktikum gewonnenen Daten und Darstellung in einem Bericht, maximal 5 Seiten

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.61 Teilleistung: Parallel Programming Techniques for Engineering [T-BGU-106769]

Verantwortung:	Prof. Dr.-Ing. Markus Uhlmann
Einrichtung:	KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von:	M-BGU-103384 - Advanced Computational Fluid Dynamics

Leitungssort
- Prüfungsleistung mündlich
- Leistungspunkte: 3
- Turnus: Jedes Semester
- Version: 2

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 6221807</td>
<td>Parallel programming techniques for engineering problems</td>
</tr>
<tr>
<td>2 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min.

Voraussetzungen
Modul "Numerical Fluid Mechanics (AF501)" muss abgeschlossen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Empfehlungen
keine

Anmerkungen
keine
5.62 Teilleistung: Platzhalter 1 Language Skills 1 [T-BGU-106884]

Einrichtung: Universität gesamt
Bestandteil von: M-BGU-103466 - Language Skills 1 (2 CP)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
5.63 Teilleistung: Platzhalter 2 Language Skills 1 ub [T-BGU-106885]

<table>
<thead>
<tr>
<th>Einrichtung:</th>
<th>Universität gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandteil von:</td>
<td>M-BGU-103466 - Language Skills 1 (2 CP)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
5.64 Teilleistung: Practical Course in Water Technology [T-CIWVT-106840]

Verantwortung: Prof. Dr. Harald Horn
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-CIWVT-103440 - Practical Course in Water Technology

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Prüfungsleistung anderer Art besteht aus folgenden Teilen, die mit der angegeben Gewichtung in die Note einfließen:

- Praktikumsprotokolle, 40 %
- Vortrag, 10 %
- mündliche Prüfung, 15 min., 50 %.

Praktikumsprotokolle und Vortrag müssen bestanden sein, bevor die mündliche Prüfung abgehalten wird.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-CIWVT-103407 - Water Technology muss begonnen worden sein.

Empfehlungen

keine

Anmerkungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Practical Course in Water Technology
22664, SS 2019, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Bemerkungen

Termine siehe Aushang.
Vorbesprechung: 03.05.2019, 15.00 h, 40.04 SR Wasserchemie R -107
5.65 Teilleistung: Prerequisite Protection and Use of Riverine Systems [T-BGU-106790]

<table>
<thead>
<tr>
<th>Teilleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite Protection and Use of Riverine Systems</td>
<td>1</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Verantwortung: Dr. Charlotte Kämpf
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103401 - Protection and Use of Riverine Systems

Lehrveranstaltungen

| SS 2019 | 6220801 | Protection and Use of Riverine Systems | 2 SWS | Vorlesung (V) | Kämpf, Nestmann, Kron |

Erfolgskontrolle(n)
Literaturannotation, ca. 150 Worte,
Impulsreferat, ca. 10 min., und
Exkursionsbericht, ca. 2 Seiten

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
Teilleistung: Probability and Statistics [T-MATH-106784]

Verantwortung: Dr. Bernhard Klar
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-103395 - Probability and Statistics

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Leistungskennzahl</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart (V)</th>
<th>Lehrkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>0188100</td>
<td>Probability and Statistics</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Klar</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, 20 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine

Verantwortung: Prof. Dr. Franz Nestmann

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-104100 - Water Distribution Systems

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnr.</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsform</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6222905</td>
<td>Water Distribution Systems</td>
<td>4 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Oberle, Kron</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Ausarbeitung, ca. 15 Seiten, und
Präsentation, ca. 15 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
5.68 Teilleistung: Projektstudium: Wasserwirtschaftliche Planungen [T-BGU-106783]

Verantwortung: Prof. Dr. Franz Nestmann
Dr.-Ing. Frank Seidel

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-103394 - Projektstudium: Wasserwirtschaftliche Planungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 6222901 | Projektstudium: Wasserwirtschaftliche Planungen | 4 SWS | Vorlesung / Übung (VÜ) | Seidel, Nestmann |

Erfolgskontrolle(n)

Projektarbeit: schriftliche Ausarbeitung, ca. 15 Seiten, mit Vortrag

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
5.69 Teilleistung: Protection and Use of Riverine Systems [T-BGU-106791]

Verantwortung: Dr. Charlotte Kämpf

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-103401 - Protection and Use of Riverine Systems

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>Vorlesung (V)</td>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 6220801 | Protection and Use of Riverine Systems | 2 SWS | Vorlesung (V) | Kämpf, Nestmann, Kron |

Erfolgskontrolle(n)

zu einem selbst gewählten Thema aus dem Bereich Wasserwirtschaft oder internationaler Naturschutz:

Vortrag, ca. 15-20 min., und
Manuskript, ca. 2500 Worte

Voraussetzungen

Die Studienleistung "Prerequisite Protection and Use of Riverine Systems" (T-BGU-106790) muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-106790 - Prerequisite Protection and Use of Riverine Systems muss erfolgreich abgeschlossen worden sein.

Empfehlungen

keine

Anmerkungen

keine
5.70 Teilleistung: Prüfungsvorleistung Gewässerlandschaften [T-BGU-106788]

Verantwortung: Dr. Charlotte Kämpf
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103400 - Gewässerlandschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Literaturannotation, ca. 150 Worte, und Impulsreferat, ca. 10 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.71 Teilleistung: Prüfungsvorleistung Umweltkommunikation [T-BGU-106620]

Verantwortung: Dr. Charlotte Kämpf
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101108 - Umweltkommunikation / Environmental Communication

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsdauer</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6224905</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>6224905</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
2 Literaturannotationen, je ca. 150 Worte, und Impulsreferat, ca. 10 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung, ca. 30 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
5.73 Teilleistung: River Basin Modelling [T-BGU-106603]

Verantwortung: Dr.-Ing. Stephan Fuchs

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-103373 - River Basin Modeling

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Art der Veranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6223812</td>
<td>Mass Fluxes in River Basins</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Fuchs</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>6223904</td>
<td>Modelling Mass Fluxes in River Basins</td>
<td>2</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Fuchs</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Ausarbeitung zur Projektarbeit, ca. 10 Seiten, und
Vortrag, ca. 15 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
5.74 Teilleistung: Seminar Paper 'Flow Behavior of Rivers' [T-BGU-108466]

Verantwortung: Prof. Dr. Franz Nestmann
Dr.-Ing. Frank Seidel

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-104083 - Flow and Sediment Dynamics in Rivers

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

Erfolgskontrolle(n)
Studienarbeit im Kurs Flow Behavior of Rivers, ca. 15 Seiten

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.75 Teilleistung: Studienarbeit "Verkehrswasserbau" [T-BGU-106779]

Verantwortung: Dr.-Ing. Andreas Kron
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103392 - Verkehrswasserbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>6222803</th>
<th>Verkehrswasserbau</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Kron</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

Studienarbeit, ca. 15 Seiten

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
5.76 Teilleistung: Study Project [T-BGU-106839]

Verantwortung: Ph.D. Luca Trevisan
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103439 - Study Project

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 15
Turnus: Jedes Semester
Version: 1

Erfolgskontrolle(n)
schriftliche Ausarbeitung, ca. 30 Seiten, und abschließender Vortrag, ca. 20 min.

Voraussetzungen
keine

Empfehlungen
Alle fachlichen und überfachlichen Qualifikationen zur Bearbeitung des gewählten Themas und der Anfertigung des "Study Project" sollten erlangt worden sein.

Anmerkungen
keine
5.77 Teilleistung: Technische Hydraulik [T-BGU-106770]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Olivier Eiff
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103385 - Technische Hydraulik

Erfolgskontrolle(n):
schriftliche Prüfung, 100 min.

Voraussetzungen:
keine

Empfehlungen:
keine

Anmerkungen:
keine
5.78 Teilleistung: Term Paper 'International Sanitary Engineering' [T-BGU-109265]

Verantwortung: Dr.-Ing. Stephan Fuchs
Dr.-Ing. Tobias Morck

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-104917 - Wastewater Treatment Technologies

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 6223902 | International Sanitary Engineering | 2 SWS | Vorlesung / Übung (VÜ) | Fuchs, Morck |

Erfolgskontrolle(n)
Präsentation, ca. 15 min., Ausarbeitung, ca. 10 Seiten

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
none
5.79 Teilleistung: Thermal Use of Groundwater [T-BGU-106803]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Philipp Blum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-BGU-103408 - Thermal Use of Groundwater</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>6339115</th>
<th>Thermal Use of Groundwater</th>
<th>2 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Blum</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- mündliche Prüfung, ca. 30 min.

Voraussetzungen
- keine

Empfehlungen
- Vorkenntnisse in der Programmierung mit Matlab; ansonsten wird dringend empfohlen, am Kurs "Einführung in Matlab" (6224907) teilzunehmen

Anmerkungen
- keine
5.80 Teilleistung: Transport and Transformation of Contaminants in Hydrological Systems [T-BGU-106598]

Verantwortung: Prof. Dr.-Ing. Erwin Zehe
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103369 - Transport and Transformation of Contaminants in Hydrological Systems
M-BGU-103872 - Subsurface Flow and Contaminant Transport

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 6224803 | Transport and Transformation of Contaminants in Hydrological Systems | 4 SWS | Vorlesung / Übung (VÜ) | Zehe, Wienhöfer |

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.81 Teilleistung: Turbulent Diffusion [T-PHYS-108610]

Verantwortung: Prof. Dr. Michael Kunz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103387 - Angewandte Meteorologie: Turbulente Ausbreitung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4052081</td>
<td>Turbulent Diffusion</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Vogel, Vogel</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4052082</td>
<td>Exercises to Turbulent Diffusion</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Vogel, Vogel, Muser</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Bearbeitung einer Simulationsaufgabe mit Präsentation der Ergebnisse

Voraussetzungen
die keine

Empfehlungen
die keine

Anmerkungen
die keine
5.82 Teilleistung: Übertagedeponien [T-BGU-100084]

Verantwortung: Dr.-Ing. Andreas Bieberstein
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-100079 - Umweltgeotechnik

Erfolgskontrolle(n)
mündliche Prüfung, ca. 20 min.

Voraussetzungen
die keine

Empfehlungen
die keine

Anmerkungen
die keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übertagedeponien
6251913, WS 19/20, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6251913, WS 19/20</td>
<td>2 SWS</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrinhalt

· Abfall-Situation und Abfall-Katalog
· Behördliche Vorgaben und rechtliche Grundlagen
· Deponieplanung
· MultibARRIERensystem
· Deponieelemente
· Hydraulische Nachweise
· Gastechnische Ausrüstung von Deponien
· Statische Nachweise
· Nachweis der Gebrauchstauglichkeit
· Bauausführung
· Besondere bautechnische Lösungen
· Ertüchtigung von Deponien

Literatur

DGGT, GDA-Empfehlungen – Geotechnik der Deponien und Altlasten, Ernst und Sohn, Berlin
Drescher (1997), Deponiebau, Ernst und Sohn, Berlin
5.83 Teilleistung: Umweltkommunikation [T-BGU-101676]

Verantwortung: Dr. Charlotte Kämpf
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101108 - Umweltkommunikation / Environmental Communication

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6224905</td>
<td>Umweltkommunikation (Environmental Communication)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Kämpf</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>6224905</td>
<td>Umweltkommunikation / Environmental Communication</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Kämpf</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Vortrag, ca. 15 min., Manuskript, ca. 6000 Worte, und Poster DIN-A3

Voraussetzungen
Die Studienleistung "Prüfungsvorleistung Umweltkommunikation" (T-BGU-106620) muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-106620 - Prüfungsvorleistung Umweltkommunikation muss erfolgreich abgeschlossen worden sein.

Empfehlungen
keine

Anmerkungen
keine
5.84 Teilleistung: Urban Water Infrastructure and Management [T-BGU-106600]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Dr.-Ing. Stephan Fuchs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-BGU-103358 - Urban Water Infrastructure and Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 6223701</td>
</tr>
<tr>
<td>Urban Water Infrastructure and Management</td>
</tr>
<tr>
<td>4 SWS</td>
</tr>
<tr>
<td>Vorlesung / Übung (VÜ)</td>
</tr>
<tr>
<td>Fuchs</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 60 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
5.85 Teilleistung: Verkehrswasserbau [T-BGU-106780]

Verantwortung: Dr.-Ing. Andreas Kron
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103392 - Verkehrswasserbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>5</th>
<th>Turnus</th>
<th>Jedes Sommersemester</th>
<th>Version</th>
<th>2</th>
</tr>
</thead>
</table>

Lehrveranstaltungen

| SS 2019 | 6222803 | Verkehrswasserbau | 4 SWS | Vorlesung / Übung (VÜ) | Kron |

Erfolgskontrolle(n)
mündliche Prüfung, ca. 20 min.

Voraussetzungen
Die Studienleistung "Studienarbeit Verkehrswasserbau" (T-BGU-106779) muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-106779 - Studienarbeit "Verkehrswasserbau" muss erfolgreich abgeschlossen worden sein.

Empfehlungen
keine

Anmerkungen
keine
5.86 Teilleistung: Wasserbauliches Versuchswesen II [T-BGU-106773]

Verantwortung: Dr.-Ing. Frank Seidel
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103388 - Versuchswesen und Strömungsmesstechnik

<table>
<thead>
<tr>
<th>Lehrsitzungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungs-Nummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten/-innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6222907</td>
<td>Experimental Hydraulics II</td>
<td>2 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Nestmann, Seidel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Hausarbeit, ca. 10 Seiten

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
Teilleistung: Wastewater and Storm Water Treatment Facilities [T-BGU-109934]

Verantwortung: Dr.-Ing. Stephan Fuchs
Dr.-Ing. Tobias Morck

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-104898 - Wastewater and Storm Water Treatment Facilities

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 6223801 | Wastewater and Storm Water Treatment Facilities | 4 SWS | Vorlesung / Übung (VÜ) | Fuchs, Morck |

Erfolgskontrolle(n)
Hausarbeit, ca. 10 Seiten, und
Vortrag, ca. 15 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
5.88 Teilleistung: Wastewater Treatment Technologies [T-BGU-109948]

Verantwortung: Dr.-Ing. Stephan Fuchs
Dr.-Ing. Tobias Morck

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-104917 - Wastewater Treatment Technologies

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Code</th>
<th>Bezeichnung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6223901</td>
<td>Municipal Wastewater Treatment</td>
<td>2 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Morck</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>6223902</td>
<td>International Sanitary Engineering</td>
<td>2 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Fuchs, Morck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung, 60 min.

Voraussetzungen

Die Studienleistung Term paper 'International Sanitary Engineering' (T-BGU-109265) muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Empfehlungen

keine

Anmerkungen

keine
5.89 Teilleistung: Water and Energy Cycles [T-BGU-106596]

Verantwortung: Prof. Dr.-Ing. Erwin Zehe
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103360 - Water and Energy Cycles

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>Vorlesungs- und Übungskennzahl</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>WS 19/20 Vertretungsvorlesung</th>
<th>WS 19/20 Übungskennzahl</th>
<th>Vorlesungs- und Übungskennzahl</th>
<th>Lehrveranstaltungsbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>6224702</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Water and Energy Cycles in Hydrological Systems: Processes, Predictions and Management</td>
<td>Zehe</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung, ca. 30 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
5.90 Teilleistung: Water Distribution Systems [T-BGU-108486]

Verantwortung: Prof. Dr. Franz Nestmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-104100 - Water Distribution Systems

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>4</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Water Distribution Systems</td>
<td>4</td>
<td>Oberle, Kron</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min.

Voraussetzungen

Modellierter Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Empfehlungen
keine

Anmerkungen
keine
5.91 Teilleistung: Water Technology [T-CIWVT-106802]

Verantwortung: Prof. Dr. Harald Horn
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-CIWVT-103407 - Water Technology

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnus</td>
<td>Jedes Wintersemester</td>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 22621</td>
<td>Water Technology</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td>WS 19/20 22622</td>
<td>Excercises to Water Technology</td>
<td>1 SWS</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
Modellstudienpläne

Im Folgenden werden für alle vier Profile beispielhafte Modellstudienpläne vorgestellt. Diese stellen jedoch jeweils nur ein Beispiel dar; darüber hinaus bestehen zahlreiche weitere Kombinationsmöglichkeiten. Die Studierenden werden bei der Modulwahl von den Mentoren beraten.

Abkürzungen

Fach
- AF Advanced Fundamentals
- CC Cross-Cutting Methods & Competencies
- P Profilstudium
- PA Profil A
- PB Profil B
- PC Profil C
- PD Profil D
- P/SM Profilstudium/Supplementary Modules
- SP Study Project
- MT Master’s Thesis/Masterarbeit

Allgemeine Angaben
- LP Leistungspunkte
- SWS Semesterwochenstunden
- PF Prüfungsform
- D Deutsch
- E Englisch
- D/E Sprache: Deutsch/Unterlagen: Englisch

Art der Lehrveranstaltung
- V Vorlesung
- Ü Übung
- S Seminar
- P Praktikum
- E Exkursion

Prüfungsformen
- sP schriftliche Prüfung
- mP mündliche Prüfung
- PaA Prüfungsleistung anderer Art
- SL Studienleistung
Modellstudienplan Profil A - Water Technologies & Urban Water Cycle

1. Fachsemester (Wintersemester)
Anzahl SWS: 18; Anzahl LP: 30; Anzahl Prüfungen: 4 (ohne Studienleistungen)

<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul</th>
<th>Titel</th>
<th>LP</th>
<th>SWS</th>
<th>Art</th>
<th>PF</th>
<th>D/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>AF101</td>
<td>Modeling of Water and Environmental Systems</td>
<td>3</td>
<td>2</td>
<td>V</td>
<td>SL</td>
<td>E</td>
</tr>
<tr>
<td>AF</td>
<td>AF201</td>
<td>Fundamentals of Water Quality</td>
<td>6</td>
<td>3</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td>AF</td>
<td>AF301</td>
<td>Urban Water Infrastructure and Management</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td>AF</td>
<td>AF701</td>
<td>Water and Energy Cycles</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td>CC</td>
<td>CC772</td>
<td>Introduction to Matlab</td>
<td>3</td>
<td>2</td>
<td>V/Ü</td>
<td>SL</td>
<td>E</td>
</tr>
</tbody>
</table>

2. Fachsemester (Sommersemester)
Anzahl SWS: 18; Anzahl LP: 31; Anzahl Prüfungen: 6 (ohne Studienleistungen)

<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul</th>
<th>Titel</th>
<th>LP</th>
<th>SWS</th>
<th>Art</th>
<th>PF</th>
<th>D/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>AF801</td>
<td>Hydrogeology</td>
<td>6</td>
<td>3</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td>CC</td>
<td>CC911</td>
<td>Probability and Statistics</td>
<td>3</td>
<td>2</td>
<td>V</td>
<td>mP</td>
<td>E</td>
</tr>
<tr>
<td>CC</td>
<td>CC921</td>
<td>Instrumental Analysis</td>
<td>6</td>
<td>4</td>
<td>V/P</td>
<td>mP + SL</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PA222</td>
<td>Membrane Technologies and Excursions</td>
<td>6</td>
<td>3</td>
<td>V/E</td>
<td>mP + SL</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PA323</td>
<td>Industrial Water Management</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>mP + SL</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PA982</td>
<td>Applied Microbiology</td>
<td>4</td>
<td>2</td>
<td>V</td>
<td>mP</td>
<td>E</td>
</tr>
</tbody>
</table>

3. Fachsemester (Wintersemester)
Anzahl SWS: 8 + Study Project (3 Monate); Anzahl LP: 29; Anzahl Prüfungen: 4

<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul</th>
<th>Titel</th>
<th>LP</th>
<th>SWS</th>
<th>Art</th>
<th>PF</th>
<th>D/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>PA982</td>
<td>Applied Microbiology</td>
<td>4</td>
<td>2</td>
<td>V</td>
<td>mP</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PA223</td>
<td>Practical Course in Water Technology</td>
<td>4</td>
<td>2</td>
<td>V/P</td>
<td>PaA</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PA621</td>
<td>Water Distribution Systems</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>mP + SL</td>
<td>E</td>
</tr>
<tr>
<td>SP</td>
<td>SP</td>
<td>Study Project</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>PaA</td>
<td>D/E</td>
</tr>
</tbody>
</table>

4. Fachsemester (Sommersemester)
Masterarbeit (6 Monate); Anzahl LP: 30; Anzahl Prüfungen: 1
Modellstudienplan Profil B - Fluid Mechanics & Hydraulic Engineering

1. Fachsemester (Sommersemester)

Anzahl SWS: 20; Anzahl LP: 30; Anzahl Prüfungen: 5 (ohne Studienleistungen)

<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul</th>
<th>Titel</th>
<th>LP</th>
<th>SWS</th>
<th>Art</th>
<th>PF</th>
<th>D/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>AF401</td>
<td>Advanced Fluid Mechanics</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>AF601</td>
<td>Hydraulic Engineering</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td>CC</td>
<td>CC471</td>
<td>Experiments in Fluid Mechanics</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>PaA</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>CC911</td>
<td>Probability and Statistics</td>
<td>3</td>
<td>2</td>
<td>V</td>
<td>mP</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PB521</td>
<td>Analysis of Turbulent Flows</td>
<td>3</td>
<td>2</td>
<td>V</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>PB633</td>
<td>Flow and Sediment Dynamics in Rivers</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>mP</td>
<td>E</td>
</tr>
</tbody>
</table>

2. Fachsemester (Wintersemester)

Anzahl SWS: 20; Anzahl LP: 30; Anzahl Prüfungen: 6

<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul</th>
<th>Titel</th>
<th>LP</th>
<th>SWS</th>
<th>Art</th>
<th>PF</th>
<th>D/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>AF101</td>
<td>Modeling of Water and Environmental Systems</td>
<td>3</td>
<td>2</td>
<td>V</td>
<td>SL</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>AF701</td>
<td>Water and Energy Cycles</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>AF501</td>
<td>Numerical Fluid Mechanics</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td>CC</td>
<td>CC571</td>
<td>Fundamentals of Numerical Algorithms for Engineers</td>
<td>3</td>
<td>2</td>
<td>V</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PB521</td>
<td>Analysis of Turbulent Flows</td>
<td>3</td>
<td>2</td>
<td>V</td>
<td>mP</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>PB421</td>
<td>Environmental Fluid Mechanics</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>PB631</td>
<td>Hydraulic Structures</td>
<td>3</td>
<td>2</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
</tbody>
</table>

3. Fachsemester (Sommersemester)

Anzahl SWS: 10 + Study Project (3 Monate); Anzahl LP: 30; Anzahl Prüfungen: 4

<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul</th>
<th>Titel</th>
<th>LP</th>
<th>SWS</th>
<th>Art</th>
<th>PF</th>
<th>D/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>PB631</td>
<td>Hydraulic Structures</td>
<td>3</td>
<td>2</td>
<td>V/Ü</td>
<td>mP</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>PC721</td>
<td>Management of Water Resources and River Basins</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>PaA</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>CC371</td>
<td>Freshwater Ecology</td>
<td>6</td>
<td>4</td>
<td>V/S/Ü</td>
<td>PaA + SL</td>
<td>E</td>
</tr>
<tr>
<td>SP</td>
<td>SP111</td>
<td>Study Project</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>PaA</td>
<td>E</td>
</tr>
</tbody>
</table>

4. Fachsemester (Wintersemester)

Masterarbeit (6 Monate); Anzahl LP: 30; Anzahl Prüfungen: 1
Modellstudienplan Profil C - Environmental System Dynamics & Management

1. Fachsemester (Wintersemester)
Anzahl SWS: 19; Anzahl LP: 30; Anzahl Prüfungen: 4 (ohne Studienleistungen)

<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul</th>
<th>Titel</th>
<th>LP</th>
<th>SWS</th>
<th>Art</th>
<th>PF</th>
<th>D/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>AF101</td>
<td>Modeling of Water and Environmental Systems</td>
<td>3</td>
<td>2</td>
<td>V</td>
<td>SL</td>
<td>E</td>
</tr>
<tr>
<td>AF</td>
<td>AF201</td>
<td>Fundamentals of Water Quality</td>
<td>6</td>
<td>3</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td>AF</td>
<td>AF701</td>
<td>Water and Energy Cycles</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td>AF</td>
<td>AF301</td>
<td>Urban Water Infrastructure and Management</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td>CC</td>
<td>CC774</td>
<td>Introduction to Environmental Data Analysis and Statistical Learning</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>sP+SL</td>
<td>E</td>
</tr>
<tr>
<td>CC</td>
<td>CC772</td>
<td>Introduction to Matlab</td>
<td>3</td>
<td>2</td>
<td>V/Ü</td>
<td>SL</td>
<td>E</td>
</tr>
</tbody>
</table>

2. Fachsemester (Sommersemester)
Anzahl SWS: 19; Anzahl LP: 30; Anzahl Prüfungen: 6

<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul</th>
<th>Titel</th>
<th>LP</th>
<th>SWS</th>
<th>Art</th>
<th>PF</th>
<th>D/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>AF801</td>
<td>Hydrogeology</td>
<td>6</td>
<td>3</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td>CC</td>
<td>CC911</td>
<td>Probability and Statistics</td>
<td>3</td>
<td>2</td>
<td>V</td>
<td>mP</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PC561</td>
<td>Groundwater Management</td>
<td>3</td>
<td>2</td>
<td>V/Ü</td>
<td>mP</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PC725</td>
<td>Subsurface Flow and Contaminant Transport</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>mP</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PC731</td>
<td>Hydrological Measurements</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>PaA</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PC721</td>
<td>Management of Water Resources and River Basins</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>PaA</td>
<td>E</td>
</tr>
</tbody>
</table>

3. Fachsemester (Wintersemester)
Anzahl SWS: 10 + Study Project (3 Monate); Anzahl LP: 30; Anzahl Prüfungen: 4

<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul</th>
<th>Titel</th>
<th>LP</th>
<th>SWS</th>
<th>Art</th>
<th>PF</th>
<th>D/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>PC561</td>
<td>Groundwater Management</td>
<td>3</td>
<td>2</td>
<td>Ü</td>
<td>PaA</td>
<td>E</td>
</tr>
<tr>
<td>P/SM</td>
<td>CC931</td>
<td>Remote Sensing and Positioning</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>mP</td>
<td>E</td>
</tr>
<tr>
<td>P/SM</td>
<td>CC791</td>
<td>Integrated Infrastructure Planning</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>PaA+SL</td>
<td>E</td>
</tr>
<tr>
<td>SP</td>
<td>SP111</td>
<td>Study Project</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>PaA</td>
<td>E</td>
</tr>
</tbody>
</table>

4. Fachsemester (Sommersemester)
Masterarbeit (6 Monate); Anzahl LP: 30; Anzahl Prüfungen: 1
Modellstudienplan Profil D - Water Resources Engineering

1. Fachsemester (Wintersemester)
Anzahl SWS: 18; Anzahl LP: 30; Anzahl Prüfungen: 4 (ohne Studienleistungen)

<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul</th>
<th>Titel</th>
<th>LP</th>
<th>SWS</th>
<th>Art</th>
<th>PF</th>
<th>D/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>AF101</td>
<td>Modeling of Water and Environmental Systems</td>
<td>3</td>
<td>2</td>
<td>V</td>
<td>SL</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>AF201</td>
<td>Fundamentals of Water Quality</td>
<td>6</td>
<td>3</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>AF301</td>
<td>Urban Water Infrastructure and Management</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>AF701</td>
<td>Water and Energy Cycles</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td>CC</td>
<td>CC772</td>
<td>Introduction to Matlab</td>
<td>3</td>
<td>2</td>
<td>V/Ü</td>
<td>SL</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PA221</td>
<td>Water Technology</td>
<td>6</td>
<td>3</td>
<td>V/Ü</td>
<td>mP</td>
<td>E</td>
</tr>
</tbody>
</table>

2. Fachsemester (Sommersemester)
Anzahl SWS: 19; Anzahl LP: 30; Anzahl Prüfungen: 5

<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul</th>
<th>Titel</th>
<th>LP</th>
<th>SWS</th>
<th>Art</th>
<th>PF</th>
<th>D/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>AF801</td>
<td>Hydrogeology</td>
<td>6</td>
<td>3</td>
<td>V/Ü</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>PA322</td>
<td>Wastewater and Storm Water Treatment Facilities</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>PaA</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PB633</td>
<td>Flow and Sediment Dynamics in Rivers</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>mP</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>PC721</td>
<td>Management of Water Resources and River Basins</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>PaA</td>
<td>E</td>
</tr>
<tr>
<td>CC</td>
<td>CC774</td>
<td>Analysis of Spatial Data</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>mP</td>
<td>E</td>
</tr>
</tbody>
</table>

3. Fachsemester (Wintersemester)
Anzahl SWS: 10 + Study Project (3 Monate); Anzahl LP: 30; Anzahl Prüfungen: 4

<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul</th>
<th>Titel</th>
<th>LP</th>
<th>SWS</th>
<th>Art</th>
<th>LN</th>
<th>D/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>PA321</td>
<td>Wastewater Treatment Technologies</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>sP+</td>
<td>SL</td>
</tr>
<tr>
<td></td>
<td>PA621</td>
<td>Water Distribution Systems</td>
<td>6</td>
<td>4</td>
<td>V/Ü</td>
<td>mP+</td>
<td>SL</td>
</tr>
<tr>
<td>CC</td>
<td>CC571</td>
<td>Fundamentals of Numerical Algorithms for Engineers</td>
<td>3</td>
<td>2</td>
<td>V</td>
<td>sP</td>
<td>E</td>
</tr>
<tr>
<td>SP</td>
<td>SP111</td>
<td>Study Project</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>PaA</td>
<td>E</td>
</tr>
</tbody>
</table>

4. Fachsemester (Sommersemester)
Masterarbeit (6 Monate); Anzahl LP: 30; Anzahl Prüfungen: 1