

Module Handbook *Water Science & Engineering* (MSc)

Winter Semester 2016/2017 as of 12 September 2016

KIT-Department of Civil Engineering, Geo and Environmental Sciences

KIT - The Research University in the Helmholtz Association

www.kit.edu

Publisher:

Department of Civil Engineering, Geo- and Environmental Sciences Karlsruhe Institute of Technology (KIT) 76128 Karlsruhe www.bgu.kit.edu

Photographs:

1. Harald	2. Bettina	3. IWG-Chair of
Horn	Waibel	Hydrology
4. Harald	5. Ulrike	6. IWG-Chair of
Horn	Scherer	Hydrology

Contact: jan.wienhoefer@kit.edu

Table of Contents

1	Stud	dy Guide	5
	1.1	Objectives of the Course	5
	1.2	Course Structure and Program	6
		anced Fundamentals (AF)	
		ss-Cutting Methods & Competencies (CC)	
		ile Studies (P)	
		ile A: Water Technologies & Urban Water Cycle (PA)	
		ile B: Fluid Mechanics & Hydraulic Engineering (PB) ile C: Environmental System Dynamics & Management (PC)	
		ile D: Water Resources Engineering (PD)	
		plementary Modules (P/SM)	
	-	dy Project	
		ter's Thesis	
		eric Qualifications	
	Add	itional Subjects	10
	1.3	Overview on Subjects and Modules	11
	Pers	sonal Curriculum & Mentoring	
	Tab	le 1: Modules AF - Advanced Fundamentals	12
	Tab	le 2: Modules CC - Cross-Cutting Methods & Competencies	13
		le 3: Modules PA - Water Technologies & Urban Water Cycle	
		le 4: Modules PB - Fluid Mechanics & Hydraulic Engineering	
		le 5: Modules PC - Environmental System Dynamics & Management	
	Tab	le 6: Additional Supplementary Modules	
	1.4	Example Curricula	
		mple Curriculum PA: Water Technologies & Urban Water Cycle	
		mple Curriculum PB: Fluid Mechanics & Hydraulic Engineering	
		mple Curriculum PC: Environmental System Dynamics & Management	
		mple Curriculum PD: Water Resources Engineering	
	1.5	Exams and Learning Controls	
	-	istration	
		cellation	
~		ake of exams	
2		dule Descriptions	
	2.1	Explanation of Module Codes	
	2.2	Advanced Fundamentals	
	2.3	Cross-Cutting Methods & Competencies	
	2.4	Profile A: Water Technologies & Urban Water Cycle	
	2.5	Profile B: Fluid Mechanics & Hydraulic Engineering	
	2.6	Profile C: Environmental System Dynamics & Management	
	2.7	Additional Supplementary Modules	
	2.8	Study Project	
~	2.9	Master's Thesis	
3		reviations	
4	Inde	ΞΧ	157

This module handbook is the relevant document describing the structure and the contents of the master's course *Water Science & Engineering*, and thus provides helpful information and guidance for planning the studies. The course and its subjects and modules are described in detail, thus providing the necessary information for planning an interdisciplinary course of studies tailored to each student's personal interests and needs.

The first section Study Guide specifies the organization of the course and further formalities in addition to the general examination regulations (ER/SPO). For example, the assignments of modules to the compulsory and elective subjects are specified. Another key function of the module handbook is the collection of module descriptions (Section 2), which provide information on the requirements and recommendations for the modules.

1.1 Objectives of the Course

The master's course *Water Science & Engineering* offers an interdisciplinary, researchoriented education at the interface of water-related engineering and natural sciences. Graduates are able to develop strategies and technical solutions for sustainable water resources management. This includes an efficient use of limited water resources, implementing increasing requirements for the protection of water bodies, handling of hydrometeorological extreme events, and mitigating the impacts of global change on the water cycle and related material cycles. Graduates are qualified for a responsible position in planning offices and engineering companies, industrial enterprises, public authorities, international development cooperation, and research and development. They acquire qualifications that allow pursuing doctoral studies.

Graduates acquire broad and in-depth knowledge of water-related scientific and engineering fundamentals, extending their prior knowledge acquired during the bachelor degree program. The lectures and classes on 'Advanced Fundamentals' are complemented by lectures and classes on engineering and scientific methods as well as interdisciplinary competencies ('Cross Cutting Methods & Competencies'). Graduates are able to transform their theoretical knowledge into quantitative approaches for the balancing of systems and to solve them analytically and numerically. They can precisely describe relevant circumstances in the environment, and represent specialized solutions to both experts as well as laypersons in an understandable form. Through practical exercises in laboratories, in computer pools or field work, graduates acquire the ability to apply methods on their own in specific contexts. They have sound knowledge of the analysis of time- and space- related data, the design of experiments, and the assessment of uncertainties of measurement and model results. The methods and practices used can be reflected and adapted to changing conditions.

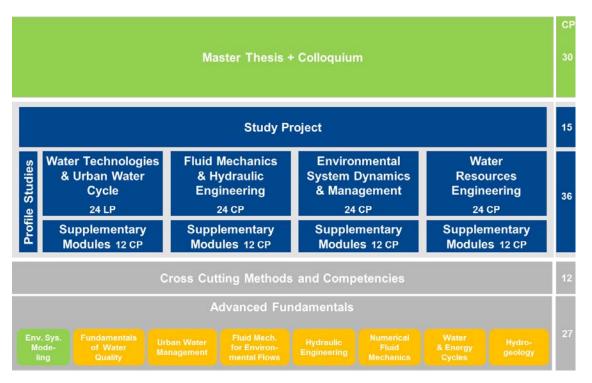
The specialization area is made up of the four profiles Water Technologies & Urban Water Cycle', 'Fluid Mechanics & Hydraulic Engineering', 'Environmental System Dynamics & Management', and 'Water Resources Engineering', which are oriented towards current

job profiles. Within the 'Profile Studies', graduates acquire the competence to link the fundamental and advanced knowledge with engineering applications in their selected field. They are thus able to transfer their expertise into the development of innovative technologies and management concepts. Supplementary modules also offer the possibility to complement the specialization with skills from neighboring scientific and engineering disciplines.

The competence to work out structured solutions is further promoted by an interdisciplinary 'Study Project', in which the theoretical knowledge and skills are applied to deal with a specific problem.

Graduates in *Water Science & Engineering* have a broad knowledge and in-depth expertise in their subject, comprehensive methodological competences, and a sound understanding of complex interactions in environmental systems. They are able to apply a range of analytical, experimental, technical and planning methods to fulfill their tasks in solving water-related problems in consideration of social and economic criteria. They deal autonomously with the current state of research and are able to analyze complex problems and select adequate methods for target-oriented solutions. As teaching is predominantly in English and students collaborate in international teams, graduates are also able to communicate their research findings in an international framework.

1.2 Course Structure and Program


The course *Water Science & Engineering* comprises 120 credit points (CP) and is structured in the subjects (Fig. 1)

- Advanced Fundamentals, AF (27 CP)
- Cross-Cutting Methods & Competencies, CC (12 CP)
- Specialization: Profile Studies, P (36 CP)
 - PA Water Technologies & Urban Water Cycle
 - PB Fluid Mechanics & Hydraulic Engineering
 - PC Environmental System Dynamics & Management
 - PD Water Resources Engineering
- Study Project, SP111 (15 CP)
- Master's Thesis, MT199 (30 CP).

Advanced Fundamentals (AF)

In this subject, 'Advanced Fundamentals' of water-related engineering and sciences are taught. All students attend a lecture series on 'Environmental System Modeling' (Table 1). They further choose four out of seven subject-specific modules – according to their fields of interest and their selected specialization (cf. 'Profile Studies').

Fig. 1: Structure of the MSc course Water Science & Engineering.

Cross-Cutting Methods & Competencies (CC)

The scientific education is complemented by a comprehensive education in interdisciplinary methods and technical skills. Students select modules of at least 12 CP in total from the options in Table 2. In line with the international orientation of the program, language courses of up to 6 CP can be taken in the module 'Language Centre CC949'.

Profile Studies (P)

The MSc *Water Science & Engineering* provides opportunity for specialization within three areas of expertise in the sectoral profiles A - C. In addition, an education of generalists in water engineering is possible in the cross-sectoral profile D. Within the profile, modules of at least 36 CP have to be completed. Students choose one of the four profiles at the beginning of their studies. The student service has to be informed about the choice by the end of the first semester at the latest.

Profile A: Water Technologies & Urban Water Cycle (PA)

The focus of this profile is on innovative technologies for the treatment of drinking water and wastewater, as well as the sustainable design of urban and decentralized water systems. This includes biological, chemical and physical processes of water treatment, as well as planning and dimensioning of infrastructure and facilities for water supply and wastewater disposal. In addition to the basic and advanced technological principles and applications, energy efficiency and economics are important aspects.

Students in the profile 'Water Technologies & Urban Water' select modules of at least 24 CP in total from the options in Table 3, as well as further 'Supplementary Modules' of 12 CP.

Profile B: Fluid Mechanics & Hydraulic Engineering (PB)

The aim of this profile is to deepen advanced hydrodynamic principles, and amplify their application for flows in the environment as well as for planning and dimensioning of hydraulic structures for water management. Emphasis is on substantiated education in physical and numerical modeling. Profile A focuses in application is on the preservation and regeneration of the structural quality of water bodies, under consideration of ecological aspects.

Students in the profile 'Fluid Mechanics & Hydraulic Engineering' select modules of at least 24 CP in total from the options in Table 4, as well as further 'Supplementary Modules' of 12 CP.

Profile C: Environmental System Dynamics & Management (PC)

This profile focuses on the processes of the water cycle in terrestrial systems and related matter and energy cycles. It also includes all aspects of integrated management of river basins, such as management strategies for the protection of surface and ground waters, the prediction of water-related extreme events, and the development of prevention and mitigation measures.

Students in the profile 'Environmental System Dynamics & Management' select modules of at least 24 CP in total from the options in Table 5, as well as further 'Supplementary Modules' of 12 CP.

Profile D: Water Resources Engineering (PD)

This profile aims at training generalists as the individual specialization. Consequently, it features a diversification into the topics of the three profiles A - C.

Students in the profile 'Water Resources Engineering' select modules of at least 24 CP in total from the options in Tables 3 to 5. At least one module from each of the three profiles A to C has to be chosen. In addition, further 'Supplementary Modules' of 12 CP are selected.

Supplementary Modules (P/SM)

The individual specialization within the profile studies is complemented by electives in order to individualize the profile studies. All subject-specific modules of the program for which an examination has not already been taken can be chosen as 'Supplementary Modules'. These could thus be further modules from the chosen profile, from other profiles, or from the subjects AF and CC (with the exception of the module 'Language Centre

CC949'). Alternatively, modules from cognate disciplines at KIT can be chosen, such as Geoecology (e. g. Ecology of Rivers and Riparian Zones), Meteorology, Civil Engineering (e. g. Geotechnical Engineering), Applied Geosciences (e. g. Engineering Geology), or Chemical and Process Engineering. Examples of possible 'Supplementary Modules' from other disciplines are listed in Table 6.

The choice of 'Supplementary Modules' has to be coordinated with the mentor. The mentor advises on suitable modules for the chosen orientation. The choice of modules not listed in Tables 1 to 6 in this handbook requires the compilation of an individual curriculum for the student, which needs to be approved by the mentor and registered with the administration (Studierendenservice).

Study Project

Students carry out an interdisciplinary 'Study Project', for which 15 CP are credited. The project prepares students for independent scientific working and writing, and introduces skills in project management. The topics for the 'Study Projects' should be especially located at the interfaces between the water-research disciplines of the KIT. In addition to the competence of combining approaches from different fields, they acquire abilities for team work and critical evaluation of results in the context of the project.

It is highly recommended to have acquired the necessary subject-specific and interdisciplinary competencies needed to work on the 'Study Project' beforehand.

The assignment of a research topic, supervision and evaluation of the 'Study Project' is carried out by a full-time faculty member of the KIT-Department of Civil Engineering, Geo and Environmental Sciences or of the KIT-Department of Chemical and Process Engineering, who offers courses in the master's program. Students look for a supervisor from the field they are interested in. In exceptional cases, the spokesperson of the study program ensures at request of the student that a topic is assigned within a four week period.

Master's Thesis

The 'Master's Thesis' is an independent scientific study and includes the theoretical and/or experimental work on a complex problem. Students deal with the current state of research and apply the expertise and scientific methods acquired during the studies. They can document, discuss and evaluate the obtained results. Furthermore, they are able to present and defend the essential findings. The topic of the 'Master's Thesis' depends on the subject area that is chosen for the thesis.

Generally, the 'Master's Thesis' is written during the 4th semester. In order to be admitted to the 'Master's Thesis', students must have successfully completed modules of at least 42 CP in the master's course *Water Science & Engineering*. It is highly recommended to have acquired the necessary subject-specific and interdisciplinary competencies needed to work on the 'Master's Thesis' beforehand.

Students look for a supervisor and a further examiner from the field they are interested in. The research topic for the 'Master's Thesis' is assigned by the supervisor, who has to be a professor, a habilitated faculty member, or an entitled research associate, and who ha has to be a member of the KIT-Department of Civil Engineering, Geo and Environmental Sciences, or of the KIT-Department of Chemical and Process Engineering. Generally, the supervisor and a second examiner evaluate the thesis. For the assignment of the research topic, the interests of the student can be taken into account. In exceptional cases, the assignment of a research topic for the 'Master's Thesis' is arranged by the chairperson of the examination board.

The 'Master's Thesis' is registered with the administration (Studierendenservice). The processing time is six months. The 'Master's Thesis' can be written in English or German, and has to be completed with a presentation within one month after submission of the thesis. The presentation is part of the examination and is considered within the evaluation.

Generic Qualifications

Generic qualifications are taught integratively within the modules, especially in the subjects 'Cross Cutting Methods & Competencies' and 'Study Project'.

Additional Subjects

Students may voluntarily acquire further credit points (up to 30 CP) from the entire choice of courses at KIT. These are not taken into account for the final grade of the degree, but are recognized as 'Additional Subjects' in the *Transcript of Records* and, on request, in the *Master of Science Certificate*. The choice as 'Additional Subject' has to be declared upon registration for an exam.

1.3 Overview on Subjects and Modules

The subjects are individually shaped by the selection of modules within the given options. Each module consists of one or more related lectures and/or classes, and is completed by taking one or more exams. The scope of each module is given by credit points (CP) that are credited when the module is successfully completed.

In addition to this module handbook, the university calendar and possibly announcements of the institutes inform about further details, for example on times and places of lectures and classes.

Personal Curriculum & Mentoring

The many options within the program require students to compile their own personal curricula. The modules should be chosen carefully. Students therefore receive advice from a mentor, whom they choose at the beginning of their studies. Mentors have to be professor, associate professor, or a habilitated faculty member at the KIT-Department of Civil Engineering, Geo and Environmental Sciences or at the KIT-Department of Chemical and Process Engineering, and have to be involved in the master's course *Water Science & Engineering.* In the case that students want to take modules other than those described in Tables 1 to 6 in this module handbook, the individual curriculum needs to be approved by the mentor and registered with the administration (Studierendenservice).

Example curricula for the four profiles are given in Section 1.4.

Table 1: Modules AF - Advanced Fundamentals

Students have to render 27 CP in the subject 'Advanced Fundamentals'. The module 'Lecture Series on Environmental Systems Modeling' is compulsory for all students. Four of the seven modules AF201 to AF801 are chosen additionally. It is advisable to include the basic modules for the chosen profile; which are:

- for Profile A : AF201 and AF301
- for Profile B: AF401, AF501 and AF601 -
- for Profile C: AF701 and AF801 -

Module Names	Course Names	СР	HPW	Туре	W/S	LC	G/E
AF101: Lecture Series Systems Modeling*	on Environmental	3	2	L	W	uLC	E
AF201: Fundamentals of Water Quality	Fundamentals of Water Quality and Exercises	6	3	L/T	W	wE	E
AF301: Urban Water Infrastructure and Management		6	4	L/T	S	wE	E
AF401: Advanced Fluid Mechanics		6	4	L/T	S	wE	E
AF501: Numerical Fluid Mechanics	Numerical Fluid Mechanics I	6	4	L/T	W	wE	E
AF601: Hydraulic Engineering	Multiphase Flow in Hydraulic Engineering	6	2	L/T	S	wE	E
	Design of Hydraulic Structures		2	L/T	S		
AF701: Water and Energy Cycles	Water and Energy Cycles in Hydrological Systems: Processes, Predictions and Management	6	4	L/T	W	οE	E
AF801: Hydrogeology	General and Applied Hydrogeology	6	2	L/T	W	wE	E
	Field Methods in Hydrogeology		1	L/T	S		

*compulsory

Abbreviations:

- CP credit points HPW
- class hours per week W winter semester
- S summer semester
- G German
- Е English
- G/E teaching language: German documents: English
- learning control
- wE written examination οE
 - oral examination
- EoT examination of
 - other type
- uLC ungraded learning control

LC

- Type of courses:
- L lecture

Р

Е

- Т tutorial S
 - seminar
 - practical training
 - excursion

Table 2: Modules CC - Cross-Cutting Methods & Competencies

Students choose modules of at least 12 CP from the range CC471 to CC949.

Module Names	Course Names	СР	HPW	Туре	W/S	LC	G/E
CC471: Experiments in Fluid Mechanics/ Strömungsmechani- sche Experimente	Experimental Methods and Physical Experi- ments/Experimentelle Methoden und physi- kalische Experimente	6	4	L/T	S	oE + uLC	G/E
CC771: Data Analysis	Geostatistics	9	4	L/T	S	οE	Е
and Environmental Monitoring/ Datenanalyse und Umweltmonitoring	Analysis of Hydrological Time Series/ Analyse hydrologischer Zeitreihen		2	L/T	W		G
CC371: Water Ecology	Applied Ecology and Water Quality	6	3	L/S	S	EoT	E
	Field Training Water Quality		1	Т	S	oE	
CC921: Instrumental	Instrumental Analysis	6	2	L	S		E
Analysis	Organic Trace Analysis of Aqueous Samples		2	Р	S	oE + uLC oE EoT ecT wE + uLC EoT EoT EoT ULC uLC uLC	
CC922: Microbial Diversity/	Microbial Diversity/ Mikrobielle Diversität	9	2	L	W	+	G
Mikrobielle Diversität	Laboratory Course: Microbial Diversity/ Praktikum: Mikrobielle Diversität		6	Р		EoT	
CC907: Principles of Se Management	ustainable Water	3	2	S	W	EoT	E
CC791: Infrastructure F economic & Ecological	U U	6	4	L/S/T	W	+	E
CC792: Environmental Umweltkommunikation	Communication/	6	2	S	W	+	G/E
CC772: Introduction to	CC772: Introduction to Matlab		2	L/T	W	uLC	E
CC911: Probability and	Statistics	3	2	L	S	οE	E
CC931: Remote Sensing and	Terrestrial & Satellite Positioning	6	2	L/T	W	οE	E
Positioning	Remote Sensing & Geo Information Systems		2	L/T	W		E

Module Names	Course Names	СР	HPW	Туре	W/S	LC	G/E
CC933: Introduction to GIS for Students of Natural, Engineering and Geo Sciences/ Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen		6	4	L/T	W	wE + uLC	G
CC935: Spatial Data Infrastructures and Web Services/ Geodateninfrastrukturen und Webdienste		4	3	L/T	S	oE + uLC	G
CC912: Numerical Math Informatics and Enginee Numerische Mathematil Fachrichtungen Informa Ingenieurwesen	ering/ < für die	6	3	L/T	S	wE	G
CC949: Module Langua *(not subject specific)	age Centre	2-6		S	W S	uLC	

Table 2 continued: Modules CC - Cross-Cutting Methods & Competencies

Table 3: Modules PA - Water Technologies & Urban Water Cycle

Students in this profile choose modules of at least 24 CP from the range PA221 to PA982, and 'Supplementary Modules' of at least 12 CP:

Module Names	Course Names	СР	HPW	Туре	W/S	LC	G/E
PA221: Water Technol	ogy	6	3	L/T	W	οE	E
PA222: Membrane Technologies and	Membrane Technologies in Water Treatment	6	2	L	W	oE +	E
Excursions	Waste Water Disposal and Drinking Water Supply – Introduction and Excursions		1	L/E	S	uLC	
PA982: Applied	Microbiology for Engineers	8	2	L	S	οE	Е
Microbiology	Environmental Biotechnology		2	L	W		E
PA223: Practical Cours	se in Water Technology	4	2	L/P	S	EoT	E
PA321: Process Engineering in	Municipal Wastewater Treatment	6	2	L/T	W	wE	E
Wastewater Treatment	International Sanitary Engineering		2	L/T	W		
PA322: Wastewater and Storm Water Treatment	Process Technologies in Water Supply, Storm Water Treatment and Wastewater Disposal	6	4	L/T	S	EoT	E
PA323: Industrial	Cleaner Production	6	2	L/T	S	oE	Е
Water Management	Adapted Technologies		2	L/T	W	+ uLC	
PA621: Water Distribution Systems/ Wasserverteilungssysteme		6	4	L/T	W	oE + uLC	G/E
PA224: Biofilm System	S	4	2	L	S	οE	E

Table 4: Modules PB - Fluid Mechanics & Hydraulic Engineering

Students in this profile choose modules of at least 24 CP from the range PB421 to PB661, and 'Supplementary Modules' of at least 12 CP:

Module Names	Course Names	СР	HPW	6	W/S	LC	G/E
PB421: Environmental	Fluid Mechanics	6	4	L/T	W	wE	E
PB521: Analysis of Turbulent Flows	Fluid Mechanics of Turbulent Flows	6	2	L	S	οE	E
	Modeling of Turbulent Flows – RANS and LES		2	L	W		
PB522: Advanced Computational Fluid	Numerical Fluid Mechanics II	6	2	L/T	S	οE	E
Mechanics	Parallel Programming Techniques for Engineering Problems		2	L/T	S	wE	
PB431: Technical Hydraulics/ Technische Hydraulik	Steady and Unsteady Operation of Hydraulic Systems/Stationärer und instationärer Betrieb von hydraulischen Anlagen	6	4	L/T	S	wE	G
PB641: Experimental Hydraulics and Measuring Tech-	Flow Measuring Techniques/ Strömungsmesstechnik	6	2	L/T	W	οE	G
niques/Versuchs- wesen und Strö- mungsmesstechnik	Experimental Hydraulics/ Wasserbauliches Versuchswesen II		2	L/T	W	EoT	G
PB631: Hydraulic Structures	Groundwater Flow around Structures	6	2	L/T	S	οE	E
	Interaction Flow- Hydraulic Structures/ Wechselwirkung Strömung – Wasserbauwerke		2	L/T	W	οE	G
Engineering/	Numerische Strömungsmodellierung im		4	L/T	W	οE	G
PB653: Hydro Power E Energiewasserbau	Engineering/	6	4	L/T	S	οE	G/E
PB655: Waterway Eng Verkehrswasserbau	ineering/	6	4	L/T	S	oE + uLC	G/E

Module Names	Course Names	СР	HPW	6	W/S	LC	G/E
PB633: Flow and Sediment Dynamics	Flow Behavior of Rivers Morphodynamics/	6	2	L/T L/T	S S	oE +	E G/E
in Rivers/ Fließgewässer- dynamik und Feststofftransport	Morphodynamik		Z		5	uLC	G/E
PB661: Water Resources Management – Feasibility Study/ Projektstudium: Wasserwirtschaftliche Planungen	Project Studies in Water Resources Management/ Projektstudium: Wasserwirtschaftliche Planungen	6	4	L/T	W	EoT	G

Table 4 sector all Maril Les DD. El 11 Marthautra	
Table 4 continued: Modules PB - Fluid Mechanics	& Hvdraulic Endineerind

Table 5: Modules PC - Environmental System Dynamics & Management

Students in this profile choose modules of at least 24 CP from the range PC741 to PC841, and 'Supplementary Modules' of at least 12 CP:

Module Names	Course Names	СР	HPW	Туре	W/S	LC	G/E
PC741: Thermodynam Systems	ics of Environmental	6	4	L/T	W	EoT	E
PC721: Management of River Basins	of Water Resources and	6	4	L/T	S	EoT	E
PC725: Transport and Contaminants in Hydro		9	5	L/T	S	oE + uLC	E
PC731: Experimental Hydrology	Experimental Hydrology and Process Monitoring in Environmental Systems	9	4	L/T/P	S	ЕоТ	Ш
	Isotope Hydrology		2	L/T			
PC341: River Basin Modeling	Mass Fluxes in River Basins	6	2	L	S	EoT	E
	Modeling Mass Fluxes in River Basins		2	L/T	W		
PC761: Aquatic Ecosy Gewässerlandschaften		6	4	L/S/E	W	EoT + uLC	G/E
PC762: Protection and Systems	Use of Riverine	6	3	S/E	S	EoT + uLC	E
PC561: Groundwater	Groundwater Hydraulics	6	2	L/T	S	οE	E
Management	Numerical Groundwater Modeling		2	Т	W	EoT	
PC821: Hydrogeology – Field and Laboratory	Preparatory Seminar/ Vorbereitendes Seminar	6	1	S	S	EoT	G
Methods/ Hydrogeologie – Gelände- und Labormethoden	Field and Laboratory Excercises/ Gelände- und Laborübungen		2	Т	S		
PC831: Hydrogeology Modeling/ Hydrogeologie - Grund		6	4	L/T	W	ЕоТ	G

Module Names	Course Names	СР	HPW	Туре	W/S	LC	G/E
PC841: Karst and Isotopes/ Karst und Isotope	Karst Hydrogeology/ Karsthydrogeologie	6	2	L/T/E	W	wE	G
	Field Trip Karst Hydrogeology/ Exkursion zur Karsthydrogeologie		3 days		S		
	Isotope Methods in Hydrogeology/ Isotopenmethoden in der Hydrogeologie		2 days		S		

Table 5 continued: Modules PC - Environmental System Dynamics & Management

Table 6: Additional Supplementary Modules

'Supplementary Modules' of at least 12 CP are chosen to complement the modules in each profile. These can be selected from the subject-specific modules AF, CC, PA, PB, and PC listed in Tables 1 to 5. In addition, the following modules are eligible as 'Supplementary Module's without formal approval. It is still advised to coordinate the choice of 'Supplementary Modules' with the mentor.

Module Names	Course Names	СР	HPW	Туре	W/S	LC	G/E
Engineering Geology		-	<u>.</u>	-		<u>.</u>	-
SM879: Thermal Use c	of Groundwater	3	2	L/T	W	οE	E
Geotechnics							
SM961: Earthwork and Embankment	Grundlagen des Erd- und Dammbaus	6	2	L/T	W	EoT	G
Dams/ Erdbau und Erddammbau	Erddammbau		2	L/T	S		
SM962:	Übertagedeponien	6	2	L/T	W	οE	G
Environmental Geotechnics/ Umweltgeotechnik	Altlasten - Untersuchung, Bewertung und Sanierung		2	L	W	οE	
Meteorology		-	-	-		-	-
SM971: General Meteorology/	Allgemeine Meteorologie	6	3	L	W	uLC	G
Allgemeine Meteorologie	Übungen zur Allgemeinen Meteorologie		2	Т			
SM972: Meteorological	Meteorologische Naturgefahren	6	2	L	S	οE	G
Hazards and Climate Change/ Meteorologische Naturgefahren und Klimawandel	Advanced Seminar IPCC Assessment Report/Hauptseminar IPCC Sachstand- bericht		2	S	S	EoT	G/E
SM973: Applied Meteorology:	Turbulente Ausbreitung	6	2	L	S	oE + uLC	G
Turbulent Transport/ Angewandte Meteo- rologie: Turbulente Ausbreitung	Übungen zu Turbulente Ausbreitung		1	Т			

1.4 Example Curricula

This section contains example curricula for each of the four profiles. In addition to these examples, many other combinations are possible. Students are guided in the choice of modules by their mentors.

Abbreviations

Subjects

- AF Advanced Fundamentals
- CC Cross-Cutting Methods & Competencies
- P Profile Studies
- PA Profile A
- PB Profile B
- PC Profile C
- PD Profile D
- P/SM Profile Studies/Supplementary Modules
- SP Study Project
- MT Master's Thesis

General Information

- CP credit points
- HPW class hours per week
- LC learning control
- G German
- E English
- G/E teaching language: German/documents: English

Type of Courses

- L lecture
- T tutorial
- S seminar
- P practical training
- E excursion

Learning Controls

- wE written examination
- oE oral examination
- EoT examination of other type
- uLC ungraded learning control

Example Curriculum PA: Water Technologies & Urban Water Cycle

1st Semester (winter semester)

Hours per week: 18; credit points: 30; exams: 4 (ungraded controls are not counted)

Subject	Module	Title	СР	HPW	Туре	LC	G/E
AF	AF101	Lecture Series on Environmental Systems Modeling	3	2	V	uLC	E
	AF201	Fundamentals of Water Quality	6	3	L/T	wE	Е
	AF701	Water and Energy Cycles	6	4	L/T	oE	Е
CC	CC772	Introduction to Matlab	3	2	L/T	uLC	Е
Р	PA221	Water Technology	6	3	L/T	oE	E
P/SM	PA621	Water Distribution Systems/ Wasserverteilungssysteme	6	4	L/T	oE + uLC	G/E

2nd Semester (summer semester)

Hours per week: 19; credit points: 31; exams: 5 (ungraded controls are not counted)

Subject	Module	Title	СР	HPW	Туре	LC	G/E
AF	AF301	Urban Water Infrastructure and Management	6	4	L/T	wE	E
	AF401	Advanced Fluid Mechanics	6	4	L/T	wE	Е
CC	CC921	Instrumental Analysis	6	4	L/P	oE + uLC	E
	CC911	Probability and Statistics	3	2	L	oE	Е
PA	PA222	Membrane Technologies and Excursions	2	1	E	uLC	E
	PA982	Applied Microbiology	4	2	L	-	E
	PA223	Practical Course in Water Technology	4	2	L/T	EoT	E

3rd Semester (winter semester)

Hours per week: 12 + Study Project (3 months); credit points: 29; exams: 4

Subject	Module	Title	СР	HPW	Туре	LC	G/E
Р	PA222	Membrane Technologies and Excursions	4	2	L	οE	E
	PA982	Applied Microbiology	4	2	L	οE	Е
P/SM	PA321	Process Engineering in Wastewater Treatment	6	4	L/T	wE	E
SP	SP111	Study Project	15	-	-	EoT	E

4th Semester (summer semester)

Example Curriculum PB: Fluid Mechanics & Hydraulic Engineering

1st Semester (summer semester)

Hours per week: 18; credit points: 27; exams: 4 (ungraded controls are not counted)

Subject	Module	Title	СР	HPW	Туре	LC	G/E
AF	AF401	Advanced Fluid Mechanics	6	4	L/T	wE	Е
	AF601	Hydraulic Engineering	6	4	L/T	wE	Е
CC	CC471	Experiments in Fluid Mechanics/ Strömungsmechanische Experimente	6	4	L/T	οE	G/E
Р	PB521	Analysis of Turbulent Flows	3	2	L	-	Е
	PB633	Flow and Sediment Dynamics in Rivers/Fließgewässerdynamik und Feststofftransport	6	4	L/T	οE	G/E

2nd Semester (winter semester)

Hours per week: 20; credit points: 30; exams: 5 (ungraded controls are not counted)

Subject	Module	Title	СР	HPW	Туре	LC	G/E
AF	AF101	Lecture Series on Environmental Systems Modeling	3	2	L	uLC	E
	AF701	Water and Energy Cycles	6	4	L/T	οE	Е
	AF501	Numerical Fluid Mechanics	6	4	L/T	wE	Е
Р	PB521	Analysis of Turbulent Flows	3	2	L	οE	Е
	PB421	Environmental Fluid Mechanics	6	4	L/T	wE	Е
	PB651	Numerische Strömungsmodellierung im Wasserbau	6	4	L/T	οE	G

3rd Semester (summer semester)

Hours per week: 12 + Study Project (3 months); credit points: 33; exams: 4

Subject	Module	Title	СР	HPW	Туре	LC	G/E
P/SM	PB431	Technische Hydraulik	6	4	L/T	wE	G
	PC721	Management of Water Resources and River Basins	6	4	L/T	EoT	E
CC	CC371	Water Ecology	6	4	L/S/T	EoT	Е
SP	SP111	Study Project	15	-	-	EoT	Е

4th Semester (winter semester)

Example Curriculum PC: Environmental System Dynamics & Management

1st Semester (winter semester)

Hours per week: 19; credit points: 31; exams: 3 (ungraded controls are not counted)

Subject	Module	Title	СР	HPW	Туре	LC	G/E
AF	AF101	Lecture Series on Environmental Systems Modeling	3	2	L	uLC	E
	AF201	Fundamentals of Water Quality	6	3	L/T	wE	Е
	AF701	Water and Energy Cycles	6	4	L/T	οE	Е
	AF801	Hydrogeology	4	2	L/T	-	Е
СС	CC771	Data Analysis and Environmental Monitoring/Datenanalyse und Umweltmonitoring	3	2	L/T	-	G
	CC772	Introduction to Matlab	3	2	L/T	uLC	Е
Ρ	PC741	Thermodynamics of Environmental Systems	6	4	L/T	EoT	E

2nd Semester (summer semester)

Hours per week: 20; credit points: 32; exams: 5 (ungraded controls are not counted)

Subject	Module	Title	СР	HPW	Туре	LC	G/E
AF	AF401	Advanced Fluid Mechanics	6	4	L/T	wE	Е
	AF801	Hydrogeology	2	1	L/T	wE	Е
CC	CC771	Data Analysis and Environmental Monitoring/Datenanalyse und Umweltmonitoring	6	4	L/T	οE	E
Ρ	PC725	Transport and Transformation of Contaminants in Hydrological Systems	9	5	L/T	oE + uLC	E
	PC731	Experimental Hydrology	9	6	L/T	EoT	Е

3rd Semester (winter semester)

Hours per week: 8 + Study Project (3 months); credit points: 27; exams: 3

Subject	Module	Title	СР	HPW	Туре	LC	G/E
P/SM	PB421	Environmental Fluid Mechanics	6	4	L/T	wE	Е
	AF501	Numerical Fluid Mechanics	6	4	L/T	wE	Е
SP	SP111	Study Project	15	-	-	EoT	Е

4th Semester (summer semester)

Example Curriculum PD: Water Resources Engineering

1st Semester (winter semester)

Hours per week: 19; credit points: 31; exams: 3 (ungraded controls are not counted)

Subject	Module	Title	СР	HPW	Туре	LC	G/E
AF	AF101	Lecture Series on Environmental Systems Modeling	3	2	L	uLC	E
	AF201	Fundamentals of Water Quality	6	3	L/T	wE	Е
	AF801	Hydrogeology	4	2	L/T	-	Е
CC	CC931	Remote Sensing and Positioning	6	4	L/T	οE	Е
	CC949	Module Language Centre: German language course	6	4	L/T	uLC	G
P/SM	CC791	Infrastructure Planning – Socio- economic & Ecological Aspects	6	4	L/S/T	wE + EoT	E

2nd Semester (summer semester)

Hours per week: 20; credit points: 32; exams: 6 (ungraded controls are not counted)

Subject	Module	Title	СР	HPW	Туре	LC	G/E
AF	AF301	Urban Water Infrastructure and Management	6	4	L/T	wE	E
	AF601	Hydraulic Engineering	6	4	L/T	wE	Е
	AF801	Hydrogeology	2	1	L/T	wE	Е
Р	PB653	Hydro Power Engineering/ Energiewasserbau	6	4	L/T	οE	G/E
	PC762	Protection and Use of Riverine Systems	6	3	S/E	EoT + uLC	E
	PC721	Management of Water Resources and River Basins	6	4	L/T	EoT	E

3rd Semester (winter semester)

Hours per week: 8 + Study Project (3 months); credit points: 27; exams: 3

Subject	Module	Title	СР	HPW	Туре	LC	G/E
Р	PA321	Process Engineering in Wastewater Treatment	6	4	L/T	wE	E
P/SM	CC792	Environmental Communication/ Umweltkommunikation	6	4	L/T	EoT + uLC	G/E
SP	SP111	Study Project	15	-	-	EoT	Е

4th Semester (summer semester)

1.5 Exams and Learning Controls

The successful completion of modules is checked with learning controls, which can be graded or ungraded. Graded learnings controls are written exams (wE), oral exams (oE), or examinations of other type (EoT). Ungraded learning controls (uLC) are course-related performances in written, oral or practical form.

Registration

The students must register for learning controls at the online student portal. The examiners can define deadlines and requirements for the registration.

Upon registration, students have to declare the assignment of the respective module to a subject, as far as options exist.

Cancellation

Students may cancel their registration for written exams (wE) without giving reasons until the examination questions are handed out. When canceling oral examinations (oE), the examiner must be informed at least three working days prior to the examination date.

Canceling of examinations of other type (EoT) as well as of ungraded learning controls (uLC) is possible up to the rendering of the respective performance or the first part of the performance. The submission of a written work (report, homework or similar) or the beginning of an oral exam (presentation, colloquium or similar) counts as rendering the performance. If deadlines are set, a cancelation can only be made in advance.

A later cancelation or withdrawal must be justified by valid grounds, and requires submitting a written declaration to the examination committee immediately.

Retake of exams

A failed examination (wE, oE, EoT) can be repeated once in the same form. If the retake of a written exam is failed again, an oral examination takes place, in which at best the grade *Passed* can be achieved. Failed exams have to be retaken by the end of the examination period of the semester after the following semester.

Ungraded learning controls (uLC) may be repeated several times.

2.1 Explanation of Module Codes

The module codes are combinations of letters and a three-digit number. The letters encode the subject in which the module is allocated. The first digit reflects the unit of organization that is responsible for the module, while the other two digits are also encoding the subject. The coding scheme is given in Table 7.

Letters: Subject	First Digit: Unit of Organization	Digits 2 - 3: Subject
AF. Advanced Fundamentals CC: Cross-Cutting Methods and Competencies PA: Profile A PB: Profile B PC: Profile C	 General Water Chemistry Sanitary Engineering Environmental Fluid Mechanics Numerical Fluid Mechanics Hydraulic Engineering Hydrology Applied Geosciences 	01 – 20: AF 21 – 70: P 71 – 99: CC
SM: Supplementary Modules (Profile)	9: Other units of organization	01 – 49: CC 50 – 79: SM 80 – 89: P 90 – 99 AF

Table 7: Scheme for module codes

2.2 Advanced Fundamentals

Lecture Series on Environmental Systems Modeling

Module Code	AF101
Responsible Lecturer	Prof. DrIng. Erwin Zehe
Level	4
ECTS Credits	3
Study Program	MSc Water Science & Engineering, compulsory module in the subject 'Advanced Fundamentals'
Instruction Language	English
Duration	1 semester
Learning Controls/Exams	Ungraded learning control in form of a task-led homework (written test on knowledge and comprehension questions about the contents of the lecture series of about 10 pages)
Special Features of the Exam	None
Grade	The module is not graded (pass/fail).
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	Students can explain approaches to model environmental systems in different water-related disciplines. Based on this, they are able to explain common approaches and methods of environmental system modeling, and to name and evaluate the respective advantages, disadvantages, ranges of applicability and inherent limitations. Students can explain universal challenges of modeling and are able to select adequate model concepts for given water-related tasks.

Courses	Title	Туре	HPW	Semest	er Lecturer
	Lecture Series on Environmental Systems Modeling	L	2	W	E. Zehe, O. Eiff, M. Uhlmann, F. Nestmann, S. Fuchs, H. Horn, U. Mohrlok
Content	 This lecture series comprises individual lectures on environmental systems modeling from a broad range of water-related disciplines (e. g. flood forecasting, contaminant transport, fluid-particle interaction, water quality, or hydraulic design). The commonalities and differences of the modeling approaches are discussed with respect to their conceptual approach, mathematical formulation and numerical scheme. Spatial and temporal scales as well as discretization of the various models are compared and discussed. Based on this broad range of examples, universal challenges of modeling are illustrated: Intrinsic uncertainties, adequate selection of numerical schemes, calibration and validation, adequate model choice. 				
Workload	Attendance time: 30 h Preparation/follow-up: 30 h Learning control (questionnaire): 30 h				
Literature/ Learning Materials					

Fundamentals of Wa	ater Quality
Module Code	AF201
Responsible Lecturer	Dr. Gudrun Abbt-Braun
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the subject 'Advanced Fundamentals'
Instruction Language	English
Duration	1 semester
Learning Controls/Exams	Written exam, 90 min
Special Features of the Exam	None
Grade	Grade of the written exam
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	Students can explain the relationships behind the occurrence of geogenic and anthropogenic compounds and microorganisms in the hydrological cycle. They are able to select adequate methods for the analysis of water constituents and microorganisms in water samples. They are familiar with the associated calculations, and they can compare and interpret the obtained data. They know how to apply different methods, how to analyze relationships and how to critically assess water quality analyses.

Courses	Title	Туре	HPW	Seme	ester	Lecturer
	Fundamentals of Water Quality and exercises	L/T	2/1	W		G. Abbt-Braun
Content	Various types of water, legislations, analytical definitions, analytical quality, sampling methods, quick test methods, field investigations, organoleptic determinations, general investigations, optical characterization (turbidity, color, UV, Lambert-Beer`s law, photometry), titrations, acid-base-systems, buffering, main inorganic compounds (anions, cations, occurrence, ion chromatography, titration, complexometry, flame photometry, atomic spectroscopy), heavy metals and metalloids (occurrence and main methods for determination), organic compounds and organic micropollutants (occurrence, thin layer chromatography, high performance liquid chromatography, infrared spectroscopy, gas chromatography), water- specific sum parameters (DOC, AOX, COD, BOD), radioactivity, microbiology.					
Workload	Attendance time: 45 h Preparation/follow-up: 65 h Examination + exam preparation: 70 h					
Literature/ Learning Materials	 Harris, D. C. (2010): Quantitative Chemical Analysis. W. H. Freeman and Company, New York. Crittenden J. C. et al. (2005): Water Treatment – Principles and Design, Wiley & Sons, Hoboken. Patnaik P. (2010), Handbook of Environmental Analysis: Chemical Pollutants in Air, Water, Soil, and Solid Wastes. CRC Press. Wilderer, P. (2011). Treatise on Water Science, Four-Volume Set, 1st Edition; Volume 3: Aquatic Chemistry and Biology. Elsevier, Oxford. Leture notes in ILIAS 					

Urban Water Infrastructure and Manag	rement

Module Code	AF301
Responsible Lecturer	DrIng. Stephan Fuchs
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the subject 'Advanced Fundamentals' MSc Civil Engineering
Instruction Language	English
Duration	1 semester
Learning Controls/Exams	Written exam, 60 min
Special Features of the Exam	None
Grade	Grade of the written exam
Requirements	None
Recommendations	Basic knowledge in sanitary engineering
Conditions	None
Learning Outcomes	Students analyze and evaluate basic methods of urban water management. They recognize the interactions between natural and technical systems. They acquire knowledge necessary to identify process engineering solutions and to implement them into functional systems (infrastructure elements). Students are able to describe urban water management issues in the context of watersheds and to take appropriate and environmentally- sound decisions in terms of energy efficiency and costs.

Courses	Title	Туре	HPW	Sem	ester	Lecturer
	Urban Water Infrastructure and Management	L/T	4		S	S. Fuchs
Content	This module provides a deep understanding of basic principles needed for the design, analysis and evaluation of urban water systems. The concept of system analysis is introduced to develop models that consider the most important biological, chemical and physical processes and are used to solve water management problems. Based on a detailed consideration of individual elements (subsystems), an overall picture of the water management system Urban Settlement and its interaction with surface and groundwater bodies can be gained. For this purpose, theoretical tools are developed and modeling approaches are reviewed. Students consider the factors energy and costs in the analysis and assessment of water management systems.					
Workload	Attendance time: 60 h Preparation/follow-up: 60 h Examination + exam preparation: 60 h					
Literature/ Learning Materials	Metcalf and Eddy (2003) Wastewater Engineering – Treatment and Reuse, McGraw-Hill, New York Imhoff, K. u. K.R. (1999) Taschenbuch der Stadtentwässerung, 29. Aufl., Oldenbourg Verlag, München, Wien					

Advanced Fluid Mee	chanics
Module Code	AF401
Responsible Lecturer	Prof. Dr. Olivier Eiff
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the subject 'Advanced Fundamentals' MSc Civil Engineering
Instruction Language	English
Duration	1 semester
Learning Controls/Exams	Written exam, 90 min
Special Features of the Exam	None
Grade	Grade of the written exam
Requirements	None
Recommendations	A first course in undergraduate fluid-mechanics, advanced engineering mathematics (analysis, differential and integral calculus, ordinary and partial differential equations, linear algebra, Fourier analysis, complex numbers)
Conditions	None
Learning Outcomes	Students acquire a firm understanding of the fundamental mechanics of fluids with emphasis towards environmental flows on the basis of the local conservation laws. They are able to differentiate and apply the different set of assumptions and methods in order to better understand the different flow classes and solutions. They are capable of solving basic flow problems after forming the relevant assumptions. Participants are able to use the knowledge and competence gained for more detailed and applied studies of environmental flows.

Courses	Title	Туре	HPW	Sem	ester	Lecturer
	Advanced Fluid Mechanics	L/T	4		S	O. Eiff
Content	This module covers the fundamental mechanics of fluids forming the foundation of environmental fluid mechanics. The approach is based on the basic local conservation laws. Emphasis is on the phenomena and the possible analytical solutions associated with the various flow classes. Topics covered include the general and special forms of the governing equations, flow kinematics, viscous incompressible flows, ideal-fluid flows, shallow flows, and buoyancy effects in fluids. Waves and turbulence are also addressed as well as different methods of analysis such as scaling.					
Workload	Attendance time: 60 h Preparation/follow-up: 30 h Exercises: 30 h Examination + exam preparation: 60 h					
Literature/ Learning Materials	I.G. Currie, Fundamental Mec	hanics o	of Fluids,	Fourth	n Editic	on 2012.

Numerical Fluid Me	chanics		
Module Code	AF501		
Responsible Lecturer	Prof. Dr. Markus Uhlmann		
Level	4		
ECTS Credits	6		
Study Program	MSc Water Science & Engineering, compulsory elective module in the subject 'Advanced Fundamentals' MSc Civil Engineering		
Instruction Language	English		
Duration	1 semester		
Learning Controls/Exams	Written exam, 60 min		
Special Features of the Exam	None		
Grade	Grade of the written exam		
Requirements	None		
Recommendations	 Fluid Mechanics (knowledge of the fundamental processes of advection and diffusion, familiarity with the Navier-Stokes equations) Mathematics (analysis partial differential equations, Fourier analysis, series expansions, complex numbers; linear algebra - matrices, determinants, eigensystems; numerics - discrete number representation, round-off, floating point operations, numerical treatment of partial differential equations) Knowledge in programming with Matlab is recommended; otherwise it is strongly recommended to participate in the course 'Introduction to Matlab (CC772)'. 		
Conditions	None		
Learning Outcomes	Students are enabled to describe the fundamental approaches of numerical solution of flow problems. They are capable of evaluating the advantages and disadvantages of these approaches in the various areas of application, enabling them to make an appropriate choice. Participants are able to apply the numerical methods to simple flow problems; this involves the generation and application of basic computer programs. They are able to analyze the results with respect to precision, stability and efficiency.		

Courses	Title	Туре	HPW	Seme	ster	Lecturer	
	Numerical Fluid Mechanics I	L/T	2/2	W		M. Uhlmann	
Content	This module constitutes a general introduction to the numerical solution of flow-related problems. The mathematical properties of the conservation equations are analyzed. The principles of numerical discretization are studied with the aid of the finite-difference and the finite-volume method. The concept of numerical stability is introduced, and various techniques of error analysis are presented theoretically and by way of examples.						
Workload	Attendance time: 60 h Preparation/follow-up: 60 h Examination + exam prepa		1				
Literature/ Learning Materials							

Hydraulic Engineeri	ng
Module Code	AF601
Responsible Lecturer	Prof. DrIng. Franz Nestmann
Level	4
ECTS Credits	6
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module in the subject 'Advanced Fundamentals' MSc <i>Civil Engineering</i>
Instruction Language	English
Duration	1 semester
Learning Controls/Exams	Written exam, 75 min
Special Features of the Exam	None
Grade	Grade of the written exam
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	Students are able to describe and analyze inter-active water management processes (water-air and water-solid). They are able to assign these basic inter-active processes to engineering tasks and carry out the dimensioning of hydraulic structures with suitable approaches. Based on the acquired process knowledge, they are able to analyze the different results of these dimensioning in a critical manner. Students are able to use and link their knowledge logically. They can work in a reflexive and self-critical manner.

Courses	Title	Туре	HPW	Sem	ester	Lecturer		
	Multiphase Flow in Hydraulic Engineering	L/T	1/1		S	F. Nestmann		
	Design of Hydraulic Structures	L/T	1/1		S	F. Nestmann		
Content	The module provides students aspects of water-air and water relevance to engineering. The course Multiphase Flow following topics: - Basic morphodynamics	-solid in in Hydr	teractio aulic E	ns as ngine	well a ering	is the covers the		
	 Suspended load processes Flow-sediment interaction: approaches to bed load transport rates 							
	 Suspended load transport: diffusion theory by Schmidt Mass transport at waterbeds: structures, development, modeling 							
	 Hydromorphological pr models, sediment trans Water-air mixes: basics applications 	sport mo	dels	-		•		
	In the course Design of Hydraulics Structures , the following topics are discussed in depth:							
	 Overview: hydraulic structures and water management and their integration in the river system 							
	 Design procedures, engineer standards and state of the art in hydraulic structures 							
Workload	Attendance time: 60 h Preparation/follow-up: 60 h Examination + exam preparati	on: 60 h	1					
Literature/ Learning Materials								

Water and Energy C	cycles
Module Code	AF701
Responsible Lecturer	Prof. DrIng. Erwin Zehe
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the subject 'Advanced Fundamentals' MSc Civil Engineering
	MSc Geoecology
Instruction Language	English
Duration	1 semester
Learning Controls/Exams	Oral exam, 20 min
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	None
Recommendations	Knowledge of programming with Matlab. Otherwise, it is strongly recommended to participate in the course 'Introduction to Matlab (CC772)'.
	Knowledge of hydrology and engineering hydrology
Conditions	None
Learning Outcomes	Students are able to explain the most relevant processes of the terrestrial water and energy cycles including their feedbacks and limitations. They know the concepts to quantitatively describe and predict these processes in the context of science and water management and are able to independently apply related computer-based tools for analysis and prediction for standard situations. Students are able to evaluate the required data and are able to quantify and evaluate the uncertainties related to the simulations and predictions.

Courses	Title	Teaching mode	Hours/ week	Sem	ester	Lecturer	
	Water and Energy Cycles in Hydrological Systems: Processes, Predictions and Management	L/T	4	W		E. Zehe, U. Ehret, J. Wienhöfer	
Content	 This module deepens the fundamentals of the water and energy cycle with particular regard to: evaporation, energy balance and processes in the atmospheric boundary layer (Reynolds decomposition, turbulence parametrization, Eddy-Covariance-method) soil, as the central control element of the water and energy cycle and of the interplay of soil water and soil water and ground heat balance (Richards equation, heat transfer equation, hydraulic and thermal soil properties) the interplay between runoff processes and soil water balance, and the soil as filter system runoff and evaporation regimes in different hydro-climates; concepts of hydrological similarity process-based and conceptual models to predict floods, the 						
Workload	water balance and evaporation Attendance time: 60 h Preparation/follow-up: 60 h Examination + exam preparation: 60 h						
Literature/ Learning Materials	Kraus, H. (2000): Die Atmo S. P. Aryan (2001): Introdu Academic Press Hornberger et al. (1998): E University Press Beven, K. (2004): Rainfall and Sons Plate, E. J.,Zehe, E. (2008 Einzugsgebiete. Prozesse	iction to Mic lements of runoff mode): Hydrologi	rometeo physical elling – Tl e und Sta	rology hydrol he prin offdyna	ogy. Jo ner: Jo amik k	ohn Hopkins ohn Wiley leiner	

Hydrogeology

nyaregeeregy	
Module Code	AF801
Responsible Lecturer	Prof. Dr. Nico Goldscheider
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the subject 'Advanced Fundamentals'
Instruction Language	English
Duration	2 semesters, starting in winter semester
Learning Controls/Exams	Written exam, 90 min
Special Features of the Exam	None
Grade	Grade of the written exam
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	Students are familiar with the advanced fundamentals and methods of hydrogeology.
	They are able to describe the processes of water transport in the subsurface quantitatively, and they can explain the hydrochemical interactions of water and rocks.
	Students are capable of solving practical hydrogeological problems related to the exploration, exploitation and protection of groundwater.

Courses	Title	Туре	HPW	Sem	ester	Lecturer	
	General and Applied Hydrogeology	L/T	1/1	W		N. Goldscheider	
	Field Methods in Hydrogeology	L/T	1		S	T. Liesch, N. Göppert	
Content	 General and Applied Hydrogeology: Subterraneous discharge: process characteristics, measurement techniques and calculation methods, regional and temporal variations Water transport in the subsurface, groundwater hydraulics Hydrochemistry Groundwater use: exploration of groundwater resources, exploitation of groundwater, and groundwater protection Regional hydrogeology Field Methods in Hydrogeology: Pumping tests and other hydraulic tests 						
	- Hydrochemica	l sampling	and mo	nitoring	g		
Workload	Attendance time: 45 h Preparation/follow-up: Examination + exam p	65 h	n: 70 h				
Literature/ Learning Materials	Fetter, C.W. (2001) Ap Hölting, B. & Coldewe Angewandte Hyd S. Keller, E.A. (2000) En Langguth, H.R. & Voig Aufl., Springer: 10 Mattheß, G. (1994) Di Borntraeger: 499 Mattheß, G. & Ubell, M Grundwasserhau Younger, P. (2007) Gr Blackwell Publish	y, W.G. (2 rogeologie vironment gt, R. (200 005 S. e Beschaf S. K. (2003) A shalt, 2. A roundwate	2009) Eir e, Spektr al Geolo 4) Hydro ffenheit c Allgemeir ufl., Borr er in the E	iführun um Ak gy. Pre geolog les Gru he Hyd htraege	ig in di ademi entice gische undwa Irogeo er: 575	ie Allgemeine und scher Verlag: 384 Hall: 562 S. Methoden, 2. ssers, 3. Aufl., logie – 5 S.	

2.3 Cross-Cutting Methods & Competencies

Experiments in Fluid Mechanics

Module Code	CC471
Responsible Lecturer	Prof. Dr. Olivier Eiff
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the subject 'Cross Cutting Methods and Competencies' MSc Civil Engineering
Instruction Language	German/English
Duration	1 semester
Learning Controls/Exams	Oral exam, 30 min Prerequisite for the exam: preparation of reports on the laboratory experiments in small student teams (approx. 10 pages including figures and tables)
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	None
Recommendations	Fundamentals of fluid mechanics
Conditions	None
Learning Outcomes	Students relate the hydrodynamics theory and physical concepts to the observed physical reality. They apply their knowledge and skills for the comparative analysis of basic flow situations in physical models, using appropriate measurement technologies. They assess and evaluate the results and limitations by comparing their results with theoretical deductions. They extend their results of phenomena-oriented experiments with regard to practical applications in technical hydraulics and environmental flows. Acquired competence: operation of test facilities and instrumentation, data analysis and basic statistical error analysis, team work, written and oral communication.

Courses	Title	Туре	HPW	Semester	Lecturer			
	Experimental Methods and Physical Experiments/							
	Experimentelle Methoden und physikalische Experimente							
Content	Lecture:			1				
	 Typical set-up of hydrau 	lic and a	erodyn	amic mode	ls			
	- Dimensional analysis, di	mensior	nless pa	arameters				
	- Measurement instrumentation							
	- Introduction to statistical error analysis							
	 Analogy numerical/physical modeling, model distortion 							
	- Technical writing and oral presentation							
	Physical experiments:							
	- Pipe flow with orifice plate							
	 Open channel flow with gates and hydraulic jumps 							
	 Venturi pipe flow with cavitation 							
	- Settling velocities of spheres							
	- Diffusion of a turbulent air jet							
	- Turbulent wake							
	- Dam leakage							
Workload	Attendance time: 60 h							
	Preparation/follow-up: 30 h							
	Evaluation and reporting experimental results: 60 h							
	Examination + exam preparation: 30 h							
Literature/								
Learning Materials								

Doto Anol	VOID ODO	Environmont	al Monitoring
Data / mai	yoro arra		

CC771
Prof. DrIng. Erwin Zehe
4
9
MSc Water Science & Engineering, compulsory elective module in the subject 'Cross Cutting Methods and Competencies' MSc Geoecology
Geostatistics: English
Analysis of Hydrological Time Series: German
2 semesters
Oral exam, 30 min
None
Grade of the oral exam
None
Statistics Module Experimental Hydrology Knowledge in programming with Matlab. Otherwise, it is strongly recommended to participate in the module 'Introduction to Matlab'.
None
Students can explain and apply methods for analysis and simulation of spatially and temporally distributed environmental data.
Based on this, they are capable of setting up experimental designs for environmental monitoring and evaluate the suitability of available data for different tasks.
Students are able to critically assess the results of analysis and simulation tools and to quantify and evaluate the related uncertainties.

Courses	Title	Туре	HPW	Seme	ester	Lecturer		
	Geostatistics	L/T	2/2		S	E. Zehe		
	Analysis of Hydrological Time Series/ Analyse hydrologischer Zeitreihen	L/T	1/1	W		J. Ihringer		
Content	Geostatistics:							
	 Fundamentals of monitoring and ex- measuring method Experimental variod variograms, variod Kriging technique Kriging, BLUE, put Estimation of spat Kriging, Simple U Simulation of spat smoothing probled Analysis of Hydrologic Fundamentals of Tests for homoge Extreme-value stant Time series comp Concepts to descant Time series gene annual-, monthly	kperimental de dds) fograms, direc gram fitting, a es: Ordinary Ku ure nugget effe tial patterns in pdating) tial patterns: 1 ms of interpol al Time Serie time series ar eneity, stationa atistics of high ponents: trend ribe residuals ration: fundam and daily valu oir design	esign (data tional vario nisotropy riging, scre ect, cross v nonstation Furning Ba ation s: nalysis arity and ou and low fl , periodicit nentals, ge es	types, s ograms, eening p validatio nary dat nds Sim utliers ows for y, residu neratior	scale t indica roperti n, RM ta (Ext nulation design uals	riplet, tor es of SE ernal Drift n, n purposes		
Workload	Application examples using statistical computer software Attendance time: 90 h							
	Preparation/follow-up: 12 Examination + exam pre							
Literature/ Learning Materials	Bárdossy, A. (2001): Intr Universität Stuttgart Kitanidis, P. K. (1999): Ir Hydrogeology. Cam	troduction into	o Geostatis					
	 Bras, R. L. and Rodriguez-Iturbe, I. (1985): Random Functions and Hydrology. Addison-Wesley Massachusetts. Brooker, I. (1982): Two-dimensional simulation by turning bands. Math. Geology 17 (1). 							

Water Ecology	
Module Code	CC371
Responsible Lecturer	DrIng. Stephan Fuchs/Dr. Stephan Hilgert
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the subject 'Cross Cutting Methods and Competencies' MSc Civil Engineering
Instruction Language	English
Duration	1 semester
Learning Controls/Exams	Examination of other type, consisting of a written assignment (8-15 pages) and a presentation (15 min.)
Special Features of the Exam	None
Grade	Grade of the examination of other type
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	Students get familiar with the basic principles of water ecology in surface waters. They are able to explain interactions between abiotic control factors (flow, chemistry, structure) and their relevance for the ecological status of standing waters and streams and to evaluate them critically. They become acquainted with field and laboratory techniques to establish water quality. With the help of these methods, they evaluate data-quality of information collected in the field regarding chemical, biological and structural water quality and determine the level of uncertainty intrinsic to the data-collection methods. Using case studies, students are able to convey and evaluate positive results as well as restrictions from water restoration processes.

Courses	Title	Туре	HPW	Semester	Lecturer	
	Applied Ecology and Water Quality	L/S	3	S	S. Fuchs, S. Hilgert	
	Field Training Water Quality	Т	1	S	S. Fuchs, S. Hilgert	
Content	 As part of the module, water ecology principles, their practical significance and implementation of restoring measures are presented. The following topics are covered: Pollutants loads discharged into water bodies: discharge points, pollutants, sediment problems Sampling methods Oxygen content Methods for the assessment of water quality and water general status Practical exercises to measure water quality and condition in the field Students get acquainted with practical examples of water protection and water remediation measures and they interpret and discuss them as part of an individual assignment. For this purpose, they implement their own framework, based on visible requirements and achievable targets. 					
Workload	Attendance time: 60 h Preparation/follow-up: 40 h Homework: 30 h Examination + exam preparation: 50 h					
Literature/ Learning Materials	Wetzel, Limnology, 3rd Schwörbel, Methoden Lecture Notes				t 1999	

Instrumental Analysis			
	Instrumenta	i Anar	VSIS

Module Code	CC921
Responsible Lecturer	PD Dr. Gisela Guthausen/Dr. Gerald Brenner-Weiß
Level	4
ECTS Credits	6
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module in the subject 'Cross Cutting Methods and Competencies'
Instruction Language	English (optionally in German)
Duration	1 semester
Learning Controls/Exams	Oral exam, 30 min Ungraded learning control as a prerequisite for the exam: written report on the laboratory data (maximum 5 pages)
Special Features of the Exam	Ungraded learning control as prerequisite
Grade	Grade of the oral exam
Requirements	None
Recommendations	Module 'Fundamentals of Water Quality (AF201)'
Conditions	None
Learning Outcomes	Students are familiar with the important methods of modern instrumental analysis and their range of application. They can explain the basic physical principles of the methods. Students are able to develop solutions for analytical problems, to choose adequate procedures for sample preparation and measuring techniques. They can evaluate the measurement data and interpret the results.

Courses	Title	Туре	HPW	Sem	ester	Lecturer		
	Instrumental Analysis	V	2		S	G. Guthausen		
	Organic Trace Analysis of Aqueous Samples	Р	2		S	G. Brenner- Weiß		
Content	Instrumental Analysis:							
	Introduction to selected methor	ods of r	nodern	instru	Imenta	al analysis:		
	 Optical methods 							
	 Magnetic resonance n 		•	•		•		
	 Imgaging methods as MRT, µCT and optical methods (CLSM and OCT) 							
	- Basics of data analysis and image processing							
	Organic Trace Analysis of Aqueous Samples:							
	Laboratory course on methods for sample concentration, sample							
	preparation, and analysis of organic trace compounds in aqueous							
	samples using HPLC coupled with tandem mass spectrometry (LC- MSMS)							
Workload	Attendance time: 60 h							
	Preparation/follow-up: 60 h							
	Report on laboratory course: 30 h							
	Examination + exam preparation: 30 h							
Literature/	Lecture notes							
Learning Materials								

Microbial Diversity/Mikrobielle Diversität

Module Code	CC922					
Responsible Lecturer	Prof. Dr. Johannes Gescher					
Level	4					
ECTS Credits	9					
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module in the subject 'Cross Cutting Methods and Competencies' MSc <i>Biology</i>					
Instruction Language	German					
Duration	1 semester, third period of winter semester (4 weeks)					
Learning Controls/Exams	- See German version					
Special Features of the Exam	- See German version					
Grade	- See German version					
Requirements	None					
Recommendations	Module 'Applied Microbiology (PA982)'					
Conditions	None					
Learning Outcomes	- See German version					

Courses	Title	Туре	HPW	Semester	Lecturer		
	Microbial Diversity/ Mikrobielle Diversität	L	2	W	J. Gescher		
	Laboratory Course: Microbial Diversity/ Praktikum: Mikrobielle Diversität	Р	6	W	J. Gescher		
Content	- See German version						
Workload	Attendance time lecture: 15 h	า					
	Attendance time lab course: 90 h						
	Preparation/follow-up lecture: 20 h						
	Preparation/follow-up lab cou	urse: 14	l5 h				
Literature/	- See German version						
Learning Materials							

	Principle	es of Sustainable Water Manag	aement
--	-----------	-------------------------------	--------

Module Code	CC907
Responsible Lecturer	Dr. Helmut Lehn
Level	4
ECTS Credits	3
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module in the subject 'Cross Cutting Methods and Competencies'
Instruction Language	English
Duration	1 semester
Learning Controls/Exams	Examination of other type, consisting of a presentation (20 min.) and a written report (10 - 15 pages)
Special Features of the Exam	None
Grade	Grade of the examination of other type
Requirements	None
Recommendations	None
Conditions	None
Restrictions	Minimum number of participants: 8
Learning Outcomes	Students understand the basic idea of the sustainability principle. They are able to apply it to different aspects of water use using appropriate concepts. They are thus capable of analyzing and evaluating the sustainability of various water technologies in a specific context (biogeographic, economic and social), and they can present and justify their assessments.

Courses	Title	Туре	HPW	Sem	ester	Lecturer	
	Principles of Sustainable Water Management	S	2	W		H. Lehn	
Content	This module provides an introduction to the principles of sustainability and of sustainable development, including an overview on the historical development of these principles and its current implementations. Various aspects of water use, water management and related technologies are analyzed and assessed in terms of the particular sustainability performance, based on the guidelines of the integrative sustainability concept of the Helmholtz Association.						
Workload	Attendance time: 30 h Preparation/follow-up: 20 h Presentation and report: 40 h						
Literature/ Learning Materials	 Lehn H, Steiner M, Mohr H (1996): Wasser, die elementare Ressource – Leitlinien einer nachhaltigen Nutzung. Berlin, Heidelberg, New York: Springer Grunwald A, Kopfmüller J (2012): Nachhaltigkeit: 2., aktualisierte Auflage. Frankfurt: Campus 						

Modul Code	CC791
Responsible Lecturer	Dr. Charlotte Kämpf
Level	4
ECTS Credits	6
Study Program	MSc <i>Water Science</i> & <i>Engineering</i> , compulsory elective module in the subject 'Cross Cutting Methods and Competencies'
Instruction Language	English
Duration	1 Semester
Learning Controls/Exams	Written exam with focus on socio-economic aspects, 60 min Ungraded learning control as prerequisite for the exam: Booklet DIN A5, about 15 pages, with focus on ecology und environmental impact assessment
Special Features of the Exam	None
Grade	Grade of the written exam
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	Students are able to rank interdisciplinary texts on development planning according to their relevance, and formulate relevant questions on this topic. Students can research systematically on a scientific problem, and they can use different technical terms. They are able to put the materials in the context of integrated development planning and current water resources problems to work on solutions for adapting to regional conditions.

Infrastructure Planning – Socio-economic & Ecological Aspects

Courses	Title	Type HPW Semester			Lecturer			
	Infrastructure Planning – Socio-economic & Ecological Aspects	L/S/T	4	W		Ch. Kämpf R. Walz		
Content	Socio-economic aspects:	Socio-economic aspects:						
	 Natural resources a 	is econo	omic good	ds				
	 Scenario analysis o resources, assessm 	•				ıral		
 Coordination of activities on economic develor strategical planning, indicator systems 					lopmer	nt;		
	 Cost-benefit analyses, investment criteria 							
	Ecological aspects / environmental impact assessment:							
	 Biodiversity, habitats, resilience, structure and dynamics of ecosystems; nutrient cycling 							
	- Bioindicators, ecosystem services							
	 History of environmental impact assessment (EIA), EIA in the EU, in other countries 							
	 Impact assessment in the EW-project management (mitigation, compensation, monitoring, auditing) 							
Workload	Attendance time: 40 h (lecture and seminar)							
	Preparation/follow-up: 20 h							
	Exam prerequisite (booklet): 60 h							
	Exam and exam preparation:60 h							
Literature/ Learning Materials								

Environmental Communication/ Umweltkommunikation

Onweitkonnnunikation	
Modul Code	CC792
Responsible Lecturer	Dr. Charlotte Kämpf
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the subject 'Cross Cutting Methods and Competencies' MSc Industrial Engineering MSc Geodesy MSc Civil Engineering
Instruction Language	German (material partly in English)
Duration	1 Semester
Learning Controls/Exams	- See German version
Special Features of the Exam	None
Grade	- See German version
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	- See German version

Courses	Title	Туре	HPW	Semeste	er Lecturer
	Umweltkommunikation/Environmental Communication	S	2	W	Ch. Kämpf
Content	- See German version				
Workload	- See German version				
Literature/ Learning Materials					

Introduction to Matl	ab
Module Code	CC772
Responsible Lecturer	DrIng. Uwe Ehret
Level	4
ECTS Credits	3
Study Program	MSc Water Science & Engineering, compulsory elective module in the subject 'Cross Cutting Methods and Competencies' MSc Civil Engineering MSc Geoecology
Instruction Language	English
Duration	1 semester
Learning Controls/Exams	Ungraded learning control, composed of ungraded assignments and a take-home exam (writing a Matlab program and a report of about one page)
Special Features of the Exam	None
Grade	The module is not graded (pass/fail).
Requirements	None
Recommendations	None
Conditions	None
Restrictions	The course is limited to 60 participants. Please register via the student portal (Studierendenportal). Only in case that this should not be possible: Please register via e-mail to the responsible lecturer.
	Participants are selected according to their year of study and in the following order: Students of <i>Water Science and Engineering</i> , then students of <i>Civil Engineering</i> with focus "Water and Environment", then other students of the module "Thermodynamics of Environmental Systems (PC741)"
Learning Outcomes	Students are familiar with common programming rules and the working environment and basic syntax of Matlab. They are capable of independently formulating and coding simple programs for data analysis and visualization as well as simulation of dynamical systems with Matlab. Students have thus gained the competence to independently solve computer-based modeling tasks in advanced courses. Students are able to solve problems and to present the related results in teamwork.

Courses	Title	Туре	HPW	Semest	er Lecturer
	Introduction to Matlab	L/T	1/1	W	U. Ehret, J. Wienhöfer
Content	 Universal prograstructures, contraand objects, material objects, using hell objects, using of files, data data data data data data data dat	ol structures, rix calculation : History, ins p ning basics: ata visualizat ing assignme lyze and visu ementation o	operator ns tallation, syntax, d ion ents ualize obs f a simple	s and var graphical ebugging servation e dynamic	iables, functions user interface, tool , reading and data cal model
Workload	Attendance time: 30 h Preparation/follow-up: 10 h Homework: 30 h Take-home exam: 20 h				
Literature/ Learning Materials					

Probability and Statist	ics
Module Code	CC911
Responsible Lecturer	Dr. Bernhard Klar
Level	4
ECTS Credits	3
Study Program	MSc Water Science & Engineering, compulsory elective module in the subject 'Cross Cutting Methods and Competencies'
Instruction Language	English
Duration	1 semester
Learning Controls/Exams	Oral exam (about 20 min)
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	 Students acquire basic knowledge of probability theory, and are able to model simple random phenomena. They know the basic differences between descriptive and inferential statistics. Students learn basic statistical methods, and are able to apply this knowledge to new examples.

Courses	Title	Туре	HPW	Sen	nester	Lecturer
	Probability and Statistics	L	2		S	B. Klar
Content	The lecture gives a concise introduction to probability theory and covers some important statistical methods. Key terms: random experiments, events, probability, conditional probability, independent events, random variables, probability distribution, density, sample mean, sample variance, sample correlation, point estimate, confidence interval, test, error propagation, linear regression.					onal ty distribution, , point
Workload	Attendance time: 30 h Preparation/follow-up: 35 h Examination + exam preparation: 25 h					
Literature/ Learning Materials	 Kottegoda, N.T. and R. Rosso (2008). Applied Statistics for Civil and Environmental Engineers. Wiley-Blackwell, 736 pp. (strongly suggested) Devore, J.L. (2011) Probability and Statistics for Engineering and the Sciences. Duxbury Press. Lefebvre, M. (2006). Applied Probability and Statistics. Springer. Ross, S.M. (2009). Introduction to Probability and Statistics for Engineers and Scientists. Academic Press. 				/ suggested) g and the nger.	

Remote Sensing	g and Positioning
	g ana r contorning

Module Code	CC931					
Responsible Lecturer	DrIng. Thomas Vö	DrIng. Thomas Vögtle/DrIng. Michael Mayer				
Level	4	4				
ECTS Credits	6					
Study Program	MSc Water Science in the subject 'Cross	•	•	•		
Instruction Language	English					
Duration	1 semester					
Learning Controls/Exams	Oral exam, 30 min					
Special Features of the Exam	None					
Grade	Grade of the oral exa	am				
Requirements	None, yet see recom	nmenda	tions be	elow		
Recommendations	Fundamentals of geo algebra (vectors, coo		•			
Conditions	None					
Learning Outcomes	The module enables students to understand and to apply surveying and remote sensing methods. It provides tools for data processing and uncertainties as well as for spatial data management and visualization. Students gain insight into processing resp. generating and analysis chains of remote sensing and geo-informatics; covering data acquisition techniques, data filtering, statistical assessment, 3D modeling, model assimilation/adaption, and critical evaluation.				vides tools for or spatial data insight into ns of remote quisition nt, 3D modeling,	
Courses	Title	Туре	HPW	Sem	ester	Lecturer
	Terrestrial & Satellite Positioning	L/T	1/1	W		M. Mayer, M. Hennes
	Remote Sensing & Geo-Information Systems	L/T	1/1	W		Th. Vögtle, S. Hinz
Content	 Terrestrial & Satellite Positioning: Definition of reference systems and realization of reference frames Satellite positioning: GNSS segments, code and phase measurements, error sources, differential and absolute positioning, RTK and static mode 3D point/position, height calculation Terrestrial surveying of heights: methods and introduction to instruments 					

	 Satellite positioning: GNSS description, signals, error sources and error reduction, processing strategies, absolute and differential GNSS, real-time, post-processing, planning a GNSS project, services Comparison of terrestrial and satellite-based height determination Remote Sensing & Geo-Information Systems: Electromagnetic spectrum; sensors and data of remote sening, image processing; strategy of development of GIS, definition and example, standardization; reference and coordinate systems, deformation and rectification, digital terrain models Data processing: histograms, multispectral classification, quality assessment
	 Examples of Remote Sensing Applications Sensors and systems: Airborne vs. satellite platforms, metric cameras, scanner, radar Exercise: Introduction to Remote Sensing Software, Multi-spectral classification, evaluation techniques
Workload	Attendance time: 60 h Preparation/follow-up: 60 h Examination + exam preparation: 60 h
Literature/ Learning Materials	 Bannister, A., S. Raymond, R. Baker (1998). Surveying. Longman. Elfick, M., J. Fryer, B. Brinker and P. Wolf (1995). Elementary surveying. Harper Collins. Hofmann-Wellenhof, B., H. Lichtenegger, J. Collins (2001). Global Positioning System, 5/e. Theory and Practice. Springer. Hofmann-Wellenhof, B., H. Lichtenegger, E. Wasle (2007). GNSS - Global Navigation Satellite Systems: GPS, GLONASS, Galileo & more. Springer. Hoffmann-Wellenhof, B., H. Moritz (2005). Physical Geodesy. Wien: Springer. Kraus, K. (2007). Photogrammetry (Vol. I): Geometry from Images and Laser Scans, 2/e. Berlin, D: de Gruyter. Lillesand, T. and R. Kiefer (2000). Remote Sensing and Image Interpretation, 4/e. John Wiley. Richards, J. A., X. Jia (2006). Remote sensing digital image analysis: an introduction, 4/e. Birkhäuser. Seeber, G. (2003). Satellite Geodesy – Foundations, Methods and Applications. 2nd ed., Berlin: De Gruyter. Torge, W. (2001). Geodesy, 3/e. Berlin, D: de Gruyter. Lecture notes: Heck, B.; Mayer, M., K. Seitz. "Terrestrial &

Introduction to GIS for Students of Natural, Engineering and Geo Scences/ Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen

Module Code	CC933
Responsible Lecturer	DrIng. Norbert Rösch/DrIng. Sven Wursthorn
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the subject 'Cross Cutting Methods and Competencies'
Instruction Language	German
Duration	1 semester
Learning Controls/Exams	Written exam, 90 min. Exam prerequisite: passing an online test
Special Features of the Exam	None
Grade	Grade of the written exam
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	- See German version

Courses	Title	Туре	HPW	Sem	ester	Lecturer
	Introduction to GIS for Students of Natural, Engineering and Geo Sciences/ Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen	L/T	2/2	W		N. Rösch, S. Wursthorn
Content	Content - See German version					
Workload	Attendance time: 60 h					
	Preparation/follow-up: 60 h					
	Examination + exam preparation: 60	h				
Literature/	Bill, Grundlagen der Informationssyst	teme, V	Vichmai	าท, 20	10	
Learning	Online resources					
Materials	Lecture notes					

Spatial Data Infrastructures and Web Services/ Geodateninfrastrukturen und Webdienste

Module Code	CC935
Responsible Lecturer	DrIng. Sven Wursthorn
Level	4
ECTS Credits	4
Study Program	MSc Water Science & Engineering, compulsory elective module in the subject 'Cross Cutting Methods and Competencies'
Instruction Language	German
Duration	1 semester, block course in the second half of the summer semester
Learning Controls/Exams	Oral exam, 20 min. Exam prerequisite: completion of exercises
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	- See German version

Courses	Title	Туре	HPW	Semester		Lecturer		
	Spatial Data Infrastructures and Web Services/ Geodateninfrastrukturen und Webdienste	L/T	1/2		S	S. Wursthorn		
Content	- See German vers	ion		-				
Workload	Attendance time: 15 h							
	Preparation/follow-up: 80 h							
Examination + exam preparation: 20 h								
Literature/	Lecture notes							
Learning	Bill, Grundlagen der Informationssysteme, Wichmann, 2010							
Materials	Online resources							

Numerical Mathematics for Informatics and Engineering/ Numerische Mathematik für die Fachrichtungen Informatik und Ingenieurwesen

Module Code	CC912			
Responsible Lecturer	Dr. Daniel Weiß			
	Prof. Dr. Christian Wieners			
	Prof. Dr. Andreas Rieder			
Level	4			
ECTS Credits	6			
Study Program	MSc Water Science & Engineering, compulsory elective module in the subject 'Cross Cutting Methods and Competencies'			
	MSc Mechanical Engineering			
Instruction Language	German			
Duration	1 semester			
Learning Controls/Exams	Written exam, 120 min			
Special Features of the Exam	None			
Grade	Grade of the written exam			
Requirements	None			
Recommendations	Higher Mathematics/Calculus			
Conditions	None			
Learning Outcomes	- See German version			

Courses	Title		HPW	Semester	Lecturer
	Numerical Mathematics for Informatics and Engineering/ Numerische Mathematik für die Fachrichtungen Informatik und Ingenieurwesen	L/T	2/1	S	D. Weiß
Content	- See German version			<u> </u>	
Workload	Attendance time: 45 h				
	Preparation/follow-up: 65 h				
	Examination + exam preparation: 70 h	า			
Literature/ Learning Materials	- See German version				

Module Language Centre

Module Code	CC949			
Responsible Lecturer	Sprachenzentrum/ Studienkolleg für ausländische Studierende			
Level	4			
ECTS Credits	2 - 6 (depending on the selected language course)			
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module in the subject 'Cross Cutting Methods and Competencies'			
Instruction Language	-			
Duration	1 or 2 semesters (depending on the selected language course)			
Learning Controls/Exams	Written exam			
Special Features of the Exam	Attendance of classes is compulsory. Further information is provided by			
	Sprachenzentrum (www.spz.kit.edu),			
	Studienkolleg für ausländische Studierende (www.stk.kit.edu).			
Grade	The module is not graded (pass/fail).			
Requirements	None			
Recommendations	None			
Conditions	Language courses in the native language of the student are not accredited.			
	English language courses below the level required for admission to the master's course <i>Water Science & Engineering</i> are not accredited.			
Learning Outcomes	Students acquire skills in cross-cultural communication.			
Content	Students can acquire and improve knowledge of a language of their choice.			
	Information on the courses offered and on the registration procedure are given at www.spz.kit.edu.			
	Students who are not native German speakers may attend German courses at <i>Studienkolleg</i> : www.stk.kit.edu/deutsch_kurse.php.			
Workload	Attendance time: 30 - 90 h Preparation/follow-up: 30 - 90 h (depending on the selected language course) The courses of <i>Sprachenzentrum</i> and <i>Studienkolleg</i> are accredited with one CP per class hour per week.			

2.4 Profile A: Water Technologies & Urban Water Cycle

Water Technology

Module Code	PA221
Responsible Lecturer	Prof. Dr. Harald Horn
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Water Technologies and Urban Water Cycle' MSc Chemical Engineering
Instruction Language	English
Duration	1 semester
Learning Controls/Exams	Oral exam, 30 min
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	Students learn fundamental knowledge in water chemistry and how to apply it to processes in aquatic systems in general and in reactors for water treatment. Water treatment will be taught for drinking water and partly waste water. The students are able to apply physical, chemical and biochemical treatment for the respective removal of particulate and dissolved components in water. They are able to use the fundamental design parameters for the different types of unit operations.

Courses	Title	Туре	HPW	Sem	ester	Lecturer
	Water Technology	L/T	3	W		H. Horn
Content	Water cycle, different types of raw water (ground and surface water). Water as solvent, carbonate balance, differentiation between microbiological and chemical population. Unit operations: sieving, sedimentation, filtration, flocculation, flotation, ion exchange, aeration, oxidation, disinfection, adsorption). For all unit operations design parameters will be provided. Simple 1D models will be discussed for description of kinetics and retention time in reactors for water treatment.					tion between s: sieving, nge, operations will be
Workload	Attendance time: 45 h Preparation/follow-up: 60 h Examination + exam preparation: 75 h					
Literature/ Learning Materials	 Crittenden et al. (2005): Water Treatment, Principles and design. Wiley & Sons, Hoboken DVGW-Handbuch (2004): Wasseraufbereitung-Grundlagen und Verfahren, Oldenbourg, München. Lecture notes will be provided in ILIAS 				J	

Membrane Technologies and Excursions

Module Code	PA222
Responsible Lecturer	Prof. Dr. Harald Horn/DrIng. Florencia Saravia
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Water Technologies and Urban Water Cycle' MSc Chemical Engineering
Instruction Language	English
Duration	2 semesters
Examinations/Partial Deliveries	Oral exam, 30 min
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	None
Recommendations	Module 'Water Technology (PA221)'
Conditions	None
Learning Outcomes	Students have a fundamental knowledge on membrane technology in water and waste water treatment. They learn how the different membrane systems (reverse osmosis, nanofiltration, ultrafiltration, microfiltration, and dialysis) have to be applied to produce a certain water quality. They are able to design such systems.

Courses	Title	TitleTeaching modeHours/ weekTerm					
	Membrane Technologies in Water Treatment	L	2	W		H. Horn, F. Saravia	
	Waste Water Disposal and Drinking Water Supply – Introduction and Excursions	L/E	1		S	G. Abbt- Braun	
Content	 The solution-diffusion model. Concentration polarization and the consequences for membrane module design. Membrane production and properties. Membrane configuration and design. Membrane systems for desalination and brackish water treatment. Membrane bio reactors for waste water treatment. Biofouling, scaling and prevention of both. Introduction to excursions and excursions: basic processes in waste water disposal and drinking water supply, including visits to municipal waste water treatment plants and treatment plants for drinking water. 				e I design. treatment. ouling, sses in ng visits to		
Workload	Attendance time: 55 h Preparation/follow-up: 60 h Examination + exam preparation: 65 h						
Literature/Learning Materials	 Melin, T.; Rautenbach, R.: "Membranverfahren - Grundlager Modul- und Anlagenauslegung", Springer Verlag Berlin Heidelberg, 2007 Mulder, Marcel H.: "Basic principles of membrane technolog Kluwer Academic, Dordrecht, 2000 				•		
					iology",		
	Schäfer, A. I.: "Nanofiltration: principles and applications", Els Oxford, 2005				s", Elsevier,		
	Staude, E.: "Membranen und Membranprozesse", Verlag Cl Weinheim, 1992				ag Chemie,		
	Lecture Notes in ILIAS						

Applied Microbiology

Module Code	PA982
Responsible Lecturer	Prof. Dr. Thomas Schwartz/Prof. Dr. Andreas Tiehm
Level	4
ECTS Credits	8
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Water Technologies and Urban Water Cycle'
Instruction Language	English
Duration	2 semesters, starting in summer semester
Learning Controls/Exams	Oral exam, 30 min
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	None
Recommendations	Understanding of microbiological processes in the environment and in technical systems
Conditions	None
Learning Outcomes	Students can explain the microbiological principles and their technical applications. Students are able to apply technically relevant biochemical and molecular biology issues to ecological, biotechnical and environmental processes. They can analyze and evaluate factors limiting operations in e.g. biotechnology and water technology and can combine processes for enhanced turnover rates in the sense of ecology and/or economy.

Courses	Title	Туре	HPW	Sen	nester	Lecturer
	Microbiology for Engineers	L	2		S	T. Schwartz
	Environmental Biotechnology	L	2	W		A. Tiehm
Content	Main issues are the structures and functions of microorganisms, their interactions with global element cycles and other organisms, the microbia impact on energy and corrosion as well as strategies against microbes. Basing on the fundamental metabolism biotechnology operations and specific monitoring strategies are presented.				organisms, the microbial jies against microbes.	
Workload	Attendance time: 60 h Preparation/follow-up:90 h Examination + exam preparation: 90 h					
Literature/ Learning Materials						

Practical Course in Water Technology

Module Code	PA223
Responsible Lecturer	Prof. Dr. Harald Horn
Level	4
ECTS Credits	4
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Water Technologies and Urban Water Cycle' MSc Chemical Engineering
Instruction Language	English
Duration	1 semester
Examinations/Partial Deliveries	Examination of other type, consisting of protocols of the experiments (graded), oral presentation (graded), and oral examination (15 min)
Special Features of the Exam	Prerequisite for the oral examination: passing of the other partial examinations (protocols and oral presentation)
Grade	The overall grade of the module is taken as the weighted average from the individual grades of the partial examinations (protocols 40 %, oral presentation 10 %, oral exam 50 %).
Requirements	Module 'Water Technology (PA221) '
Recommendations	None
Conditions	None
Learning Outcomes	Students can explain the most important processes in water treatment. They are able to do calculations, and to compare and interpret data. They learn how to use different methods, and to interpret different processes.

Courses	Title	Туре	HPW	Sem	ester	Lecturer
	Practical Course in Water Technology	V/P	2		S	H. Horn, G. Abbt-Braun, A. Hille-Reichel
Content	6 different experiments out of: equilibrium study of the calcium carbonate system, flocculation, adsorption, oxidation, atomic absorption spectroscopy, ion chromatography, liquid chromatography, sum parameter, and an oral presentation of the student					
Workload	Attendance time	: 35 h				
	Preparation/follo	w-up: 50 h				
	Examination + e	xam prepai	ation: 35	h		
Literature	Harris, D. C. (2010): Quantitative Chemical Analysis. W. H. Freeman and Company, New York.				lysis. W. H. Freeman and	
	Crittenden J. C. et al. (2005); Water Treatment – Principles and Design, Wiley & Sons, Hoboken.				- Principles and Design,	
	Patnaik P. (2010), Handbook of Environmental Analysis: Chemical Pollutants in Air, Water, Soil, and Solid Wastes. CRC Press.					
	Wilderer, P. (2011). Treatise on Water Science, Four-Volume Set, 1st Edition; Volume 3: Aquatic Chemistry and Biology. Elsevier, Oxford.					
	Lecture Notes in	ILIAS				

		atment				
Module Code	PA321	PA321				
Responsible Lecturer	Prof. h.c. Erhard Hoffmann					
Level	4					
ECTS Credits	6					
Study Program		MSc Water Science & Engineering, compulsory elective module in the profile 'Water Technologies and Urban Water Cycle' MSc Civil Engineering				
Instruction Language	English					
Duration	1 semester					
Learning Controls/Exams	Written exam, 60 min					
Special Features of the Exam	None					
Grade	Grade of the written exa	am				
Requirements	None					
Recommendations	Module 'Urban Water Infrastructure and Management (AF301)'					
Conditions	None					
Learning Outcomes	Students acquire knowledge about typical techniques in wastewater treatment at local and international level. They are able to perform a technical evaluation and describe dimensioning approaches taking into consideration legal boundary conditions. Students analyze, evaluate and optimize operation of plant technologies. They focus on energy-efficient plant designs considering the most relevant factors affecting the total costs. Students can analyze the situation in emerging and developing countries making a comparison with that in industrialized countries. Based on that, they are able to develop water-related management strategies.					
Courses	Title	Туре	HPW	Semest	er	Lecturer
	Municipal Wastewater Treatment	L/T	1/1	W		E. Hoffmann
	International Sanitary Engineering	L/T	1/1	W		E. Hoffmann

-	
Content	Municipal Wastewater Treatment:
	Students gain deep knowledge about design and operation of typical
	process technologies in municipal wastewater treatment in Germany.
	Following processes are covered:
	- Different activated sludge processes
	 Anaerobic technologies and energy-recovery systems
	- Filtration technologies
	- Wastewater disinfection and pathogen removal
	- Chemical and biological phosphorus removal
	- Micro-pollutants removal
	- Resource management and energy efficiency
	International Sanitary Engineering:
	Students get acquainted with the design and operation used for
	wastewater treatment at international level. They analyze, evaluate and
	take decisions when new and more holistic oriented methods can be
	 implemented. Following topics are covered: Activated sludge processes
	 Trickling filters and rotating biological contactors
	- Treatment ponds
	- Retention soil filter / Wetlands
	- UASB/EGSB/Anaerobic filter
	 Decentralized versus centralized systems
	- Material flow separation
	- Energy-recovery from wastewater
	- Waste management
Workload	Attendance time: 60 h
Workload	Preparation/follow-up: 60 h
	Examination + exam preparation: 60 h
Literature/	Imhoff, K. u. K.R. (1999) Taschenbuch der Stadtentwässerung, 29. Aufl.,
Learning	Oldenbourg Verlag, München, Wien
Materials	ATV-DVWK (1997) Handbuch der Abwassertechnik: Biologische und weitergehende Abwasserreinigung, Band 5, Verlag Ernst & Sohn,
	Berlin
	ATV-DVWK(1997) Handbuch der Abwassertechnik: Mechanische Abwasserreinigung, Band 6, Verlag Ernst & Sohn, Berlin
	Sperling, M.; Chernicaro, C.A.L. (2005) Biological wastewater treatment in
	warm climate regions, IWA publishing, London
	Wilderer, P.A., Schroeder, E.D. and Kopp, H. (2004) Global Sustainability -
	The Impact of Local Cultures. A New Perspective for Science and Engineering, Economics and Politics WILEY-VCH

Wastewater and Storm Water Treatment				
Module Code	PA322			
Responsible Lecturer	Prof. h.c. Erhard Hoffmann			
Level	4			
ECTS Credits	6			
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module in the profile 'Water Technologies and Urban Water Cycle' MSc <i>Civil Engineering</i>			
Instruction Language	English			
Duration	1 semester			
Learning Controls/Exams	Examination of other type in the form of a term paper (about 10 pages) and presentation (15 min)			
Special Features of the Exam	None			
Grade	Grade of the examination of other type			
Requirements	None			
Recommendations	Module 'Urban Water Infrastructure and Management (AF301)'			
Conditions	None			
Learning Outcomes	Students get familiar with technical plants for wastewater and storm water treatment. They can explain operating principles of individual system components as well as assess their suitability for specific applications and apply basic dimensioning approaches.			

Courses	Title	Туре	HPW	Sem	ester	Lecturer
	Process Technologies in Water Supply, Storm Water Treatment and Wastewater Disposal	L/T	4		S	S. Fuchs, E. Hoffmann
Content	Guided visits, description and e plants:	evaluation c	f differe	ent wa	iter tre	atment
	 Storm water sedimentation 	tion tanks				
	- Storm water overflow					
	- Retention soil filters					
	- Sewage treatment plants					
	Dimensioning approaches for the design of storm water treatment facilities.				nent	
Workload	Attendance time: 60 h					
	Preparation/follow-up: 30 h					
	Term paper and presentation: 90 h					
Literature/ Learning Materials	Gujer, W. "Siedlungswasserwirtschaft", Springer, Berlin 3.Aufl., 2007 Grigg, N, S "Water, Wastewater, and Stormwater Infrastructure Management", Second Edition (Englisch) Francis and Taylor 2012					

Industrial Water Management

Module Code	PA323
Responsible Lecturer	Prof. h.c. Erhard Hoffmann
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Water Technologies and Urban Water Cycle' MSc Civil Engineering
Instruction Language	English
Duration	2 semesters
Examinations/Partial Deliveries	Oral exam, 30 min. Ungraded learning control as a prerequisite for the exam: Written report on the laboratory work (about 10 pages)
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	Students acquire knowledge about techniques for wastewater treatment in industrial production processes and based on it, they can explain functioning principles of the techniques.
	Students are able to assess wastewater constituents from industrial effluents and its emissions on the basis of legal regulations. They can analyze arising problems in the industrial wastewater treatment and select appropriate methods for emission reduction and water recycling.

Courses	Title	Туре	HPW	Seme	ester	Lecturer
	Cleaner Production	L/T	2		S	E. Hoffmann
	Adapted Technologies	L/T	2	W		E. Hoffmann
Content	In this module, different types of industrial wastewater (e.g. leather, paper, metal industries) are considered and studied. Customized chemical, physico-chemical and, if necessary, biological treatment processes are presented and discussed.					
Workload	Attendance time: 60 h Preparation/follow-up: 40 h Lab report: 30 h Examination + exam preparation: 50 h					
Literature/ Learning Materials	Lecture notes Rüffer, H; Rosenwinkel, Industrieabwasserre Metcalf and Eddy (2003) Reuse, McGraw-Hil	einigung) Waste	g, Olden water Ei	bourg-'	Verlag	

Water Distribution \$	
Wasserverteilungss	ysteme
Module Code	PA621
Responsible Lecturer	NN
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Water Technologies and Urban Water Cycle' MSc Civil Engineering
Instruction Language	German/English
Duration	1 semester
Learning Controls/Exams	Oral exam, 30 min. Prerequisite for the exam is a project work with written report (15 pages) and presentation.
Special Features of the Exam	None
Grade	The overall grade of the module corresponds to the grade of the oral exam.
Requirements	None
Recommendations	Hydromechanics (particularly pipe hydraulics)
Conditions	None
Learning Outcomes	Students will have profound knowledge of the components and operational requirements of water supply systems. They are enabled to plan, design and optimize water distribution systems. They are capable to critically analyze concepts and designs based on their knowledge. Participants are able to set up and apply numerical models of water distribution systems for planning and analysis. Students have competences in work organization, presentation and discussion of results.

Courses	Title	Туре	HPW	Seme	ester	Lecturer
	Water Distribution Systems/ Wasserverteilungssysteme	L/T	2/2	W		NN
Content	The module covers the following topics:					
	 Fundamentals of water distribution Fundamentals of water distribution system modeling Introduction to the software Epanet (water distribution system model) and ArcGIS (geographic information system) Water demand Water losses Calibrating a water distribution system model Designing pipe networks, storage tanks and pump stations Application of the technical standards (DVGW) The participants apply the theoretical knowledge to analyze and design an exemplary water distribution network.					
Workload	Attendance time: 60 h Preparation/follow-up: 30 h Project work: 60 h Examination + exam preparation: 30 h					
Literature/ Learning Materials	Mutschmann und Stimmelmayr (2007). Taschenbuch der Wasserversorgung, 14. Auflg., Vieweg. Walski, T. M., Chase, D. V., Savic, D. A., Grayman, W., Beckwith, S. und Koelle, E. (2003). Advanced Water Distribution Modeling					
	Management, Haestad Course materials (in Germa			aleibu	ıy.	

Biofilm Systems

bionini oystems	
Module Code	PA224
Responsible Lecturer	Prof. Dr. Harald Horn
Level	4
ECTS Credits	4
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Water Technologies and Urban Water Cycle' MSc Chemical Engineering
Instruction Language	English
Duration	1 semester
Examinations/Partial Deliveries	Oral exam, 20 min
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	Students can describe the structure and function of biofilms in natural habitats as well as in technical systems. They can explain the major influencing factors and processes for the formation of biofilms. They are familiar with techniques for visualizing biofilm structures as well as with models for simulating biofilm growth. They are able to select appropriate methods for the analysis of biofilms and to evaluate the habitat conditions.

Courses	Title	Туре	HPW	Seme	ester	Lecturer
	Biofilm Systems	L	2		S	H. Horn, J. Gescher, A. Hille-Reichel, M. Wagner
Content	Microorganisms typically organize in the form of biofilms in technical and natural aquatic systems. However, biofilms are not only accumulated microorganisms at interfaces: They are bound together by a matrix of extracellular polymeric substances (EPS). In this course, the structure and function of biofilms in different natural habitats and technical applications (biofilm reactors, biofilms in natural waters, biofouling in technical systems and biofilms for power generation in microbial fuel cells) are presented and discussed. Biofilm growth and abrasion as well as models for the simulation of these processes are introduced. Furthermore, microscopic techniques for the visualization of biofilm structures are presented.					re not only are bound together (EPS). In this course, atural habitats and natural waters, ower generation in Biofilm growth and nese processes are
Workload	Attendance time: 30 h Preparation/follow-up: 30 h					
	Examination + exam preparation: 60 h					
Literature/ Learning Materials	Lecture notes in ILIAS					

2.5 Profile B: Fluid Mechanics & Hydraulic Engineering

Environmental Fluid Mechanics

Module Code	PB421
Responsible Lecturer	Prof. Dr. Olivier Eiff
Level	4
ECTS Credits	6
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module in the profile 'Fluid Mechanics and Hydraulic Engineering' MSc <i>Civil Engineering</i>
Instruction Language	English
Duration	1 semester
Learning Controls/Exams	Written exam, 90 min
Special Features of the Exam	None
Grade	Grade of the written exam
Requirements	Module 'Advanced Fluid Mechanics (AF401)'
Recommendations	Module 'Analysis of Turbulent Flows (PB521)'
Conditions	None
Learning Outcomes	Students identify fundamental hydrodynamic processes in the natural environment in water and air applications and solve related problems. They can relate the observed phenomena to fundamental principles of hydrodynamics and to the specific nature of the flow conditions. They can critically evaluate the different models and approximations made to obtain solutions and predictions and can make first estimates.

Courses	Title	Туре	HPW	Sem	ester	Lecturer
	Environmental Fluid Mechanics	L/T	3/1	W		O. Eiff
Content	This module covers the fundamental concepts and flow models of environmental fluid mechanics in both water and air. The topics include turbulence structure in rivers and open channels, diffusion and dispersion, atmospheric boundary layers, internal waves, instabilities and mixing, stratified turbulence, buoyant jets and plumes.				e topics s, diffusion vaves,	
Workload	Attendance time: 60 h					
	Preparation/follow-up: 60 h		_			
	Examination + exam preparation: 60 h					
Literature/						
Learning Materials						

Analysis of Turbule	nt Flows
Module Code	PB521
Responsible Lecturer	Prof. Dr. Markus Uhlmann
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the subject 'Cross Cutting Methods and Competencies' MSc Civil Engineering MSc Mechanical Engineering
Instruction	English
Language	English
Duration	2 semesters, starting in summer semester
Learning Controls/Exams	Oral exam, 45 min
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	None
Recommendations	Basic fluid mechanics (experience in working with the Navier- Stokes equations) Mathematics (analysis – partial differential equations, Fourier series, vectors/tensors, matrices and eigenvalues; statistics) Knowledge in programming with Matlab is recommended; otherwise it is strongly recommended to participate in the course 'Introduction to Matlab (CC772)'.
Conditions	None
Learning Outcomes	Participants are able to describe the characteristics of turbulent flows, and to quantify their effect upon the transport rates of momentum, heat and mass. They are aware of the problems associated with computationally determining turbulent flow quantities. With this knowledge, they are able to weigh the pros and cons of the different modeling approaches; they are further able to choose an appropriate approach for a given application. Participants have the ability to critically evaluate the expected outcome of a range of turbulence models with respect to their predictive capabilities and the required computational effort.

Courses	Title	Туре	HPW	Sem	ester	Lecturer
	Fluid Mechanics of Turbu- lent Flows	L	2		S	M. Uhlmann
	Modeling of Turbulent Flows – RANS and LES	L	2	W		M. Uhlmann
Content	The present module gives turbulent flows. The mathe turbulence is successively conservation laws, the required useful modeling approache The course Fluid Mechani phenomenology of turbuler description of turbulent flow of free and wall-bounded s turbulent energy cascade.	matical develo uired m es for fli i cs of 1 it flows v proce hear flo Turbu curbuler	descri ped, i.e athema uids en Furbule , introd sses, c ows, an lent Flo nce mo	ption of the patical t gineer ent Flo uces t liscuss d pres ows - deling	of the proper ools a ring pr ows p the sta ses th sents a RANS , base	physics of ties of the and the most roblems. resents the atistical e characteristics an analysis of the S and LES , first ed upon Reynolds
	averaging (RANS) is presented, starting with the simplest algebraic model and ranging up to Reynolds stress transport models. Furthermore, an introduction to the concept of large-eddy simulation (LES) is given.					nodels.
Workload	Attendance time: 60 h					
	Preparation/follow-up: 60 h Examination + exam preparation: 60 h					
Literature/						
Learning Materials						

Advanced Computational Fluid Mechanics

Madada Osida	
Module Code	PB522
Responsible Lecturer	Prof. Dr. Markus Uhlmann
Level	4
ECTS Credits	6
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module in the profile 'Fluid Mechanics and Hydraulic Engineering' MSc <i>Civil Engineering</i>
Instruction Language	English
Duration	1 semester
Examinations/Partial Deliveries	Partial exam 'Numerical fluid mechanics II' (3 CP): oral exam, 30 min. Partial exam 'Parallel programming techniques for engineering problems' (3 CP): written exam, 60 min.
Special Features of the Exam	None
Grade	Weighted average of the grades of the partial exams according to credit points
Requirements	Module 'Numerical Fluid Mechanics (AF501)'
Recommendations	Programing skills in at least one compiler language (C,C++, FORTRAN or equivalent)
Conditions	None
Learning Outcomes	Students are able to numerically solve simplified flow problems based upon the Navier-Stokes equations in an independent fashion. This involves the design of a solution method, the analysis of its properties (concerning stability, precision, computational effort), the algorithmic implementation, the validation with respect to appropriate test cases, and the final documentation of the results. Furthermore, participants of this course are enabled to judge techniques for the use of massively parallel computer systems to solve fluid mechanics problems as to their efficiency and applicability. They are capable of applying the appropriate parallel programming techniques to selected model problems.

Courses	Title	Teaching mode	Hours/ week	Те	rm	Lecturer
	Numerical Fluid Mechanics II	L/T	1/1		S	M. Uhlmann
	Parallel Programing Techniques for Engineering Problems	L/T	1/1		S	M. Uhlmann
Content	In the present modul fluid mechanics prob of the course Numer numerical solution m equations in several aid of practical exam coupling and decoup incompressible flows waves, hydraulic jun numerical tracking of The course Parallel Problems conveys the massively-parallel co computer architectur paradigms are introd standard algorithms disciplines involving the practiced with the aid standard.	lems are imp ical Fluid M ethods for the spatial dimen- ples. This ind- ling of veloci- a, numerical the nps), computer inertial parti- programing he fundamen- omputer syste- es and the m uced. Then the of numerical field problem	barted, bui echanics e time-dep nsions are cludes the ity and pre- reatment of tation of so cles, linea Technique tal progra ems. First, nost widely echniques fluid mech s) are pre	Iding (II. He pende demo follow essure of disc calar t ir stab ues fo ummin the c / usec s for ir nanics sente	upon f re, va onstra ving a fields contine ransp ility au o r Eng g con ommo l prog nplem (and d, ana	the material rious vier-Stokes ted with the spects: a in uities (shock ort, nalysis. gineering cepts for on parallel ramming lenting other alyzed and
Workload	Attendance time: 60					
	Preparation/follow-up		60 h			
Literature/Learning	Examination + exam	preparation:	00 11			
Materials						

Technical Hydraulics/ Technische Hydraulik

N	
Module Code	PB431
Responsible Lecturer	DrIng. Cornelia Lang
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Fluid Mechanics and Hydraulic Engineering' MSc Civil Engineering
Instruction Language	German
Duration	1 semester
Learning Controls/Exams	Written exam, 100 min
Special Features of the Exam	None
Grade	Grade of the written exam
Requirements	None
Recommendations	Basic knowledge of hydromechanics
Conditions	None
Learning Outcomes	- See German version

Courses	Title	Туре	HPW	Sem	ester	Lecturer
	Steady and Unsteady Operation of Hydraulic Systems/ Stationärer und instationärer Betrieb von hydraulischen Anlagen	L/T	2/2		S	C. Lang
Content	- See German version	•	•	·	-	
Workload	Attendance time: 60 h					
	Preparation/follow-up: 60 h					
	Examination + exam preparation: 60 h					
Literature/	- See German version					
Learning Materials						

Experimental Hydraulics and Measuring Techniques/ Versuchswesen und Strömungsmesstechnik

Module Code	PB641
Responsible Lecturer	DrIng. Frank Seidel
Level	4
ECTS Credits	6
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module in the profile 'Fluid Mechanics and Hydraulic Engineering' MSc <i>Civil Engineering</i>
Instruction Language	German
Duration	1 semester
Examinations/Partial Deliveries	Partial exam 'Measurement Techniques in Flows' (3 CP): oral, 30 min
	Partial exam 'Hydraulic Experiments II' (3 CP): EoT (graded paper, 10 pages)
Special Features of the Exam	None
Grade	Average of the grades of the partial exams
Requirements	None
Recommendations	Module 'Experiments in Fluid Mechanics (CC 471)' Hydraulic lab practice
Conditions	None
Learning Outcomes	Students are able to describe the principles of different flow measurement methods and combine this information with the basics of today's flow measurement technology. They have basic knowledge about the structure and can analyze the suitability of measurement methods and set application boundaries. Students have basic knowledge about experimentation in hydraulics. They know the similarity mechanical requirements and assign them to the hydromechanical basics. Students are able to analyze applications in the field of multiphase hydraulics and select suitable model concepts. They can present their own thoughts and ideas in a structured manner and discuss the themes with specialists.

Courses	Title	Туре	HPW	Semester	Lecturer
	Flow Measuring Techniques/ Strömungsmesstechnik	L/T	1/1	W	B. Ruck
	Experimental Hydraulics II/ Wasserbauliches Versuchswesen II	L/T	1/1	W	F. Nestmann, F. Seidel
Content	In this module, the following topic	s will b	e discu	ssed in dept	h:
	 Flow Measuring Techniques: Basic equations of fluid m Relevant metrics Pressure sensors Mechanical measuring meth Electrical measuring meth Acoustic measuring method 	ethods nods ods	cs		
	 Experimental Hydraulics II: Models with movable beds Experiments related to multiphase flow problems (water-air, water-solid) Applications and their boundaries 				
Workload	Attendance time: 60 h Preparation/follow-up: 60 h Examination + exam preparation: 60 h				
Literature/ Learning Materials					

Hydraulic Structures

Module Code	PB631
Responsible Lecturer	Prof. DrIng. Franz Nestmann
Level	4
ECTS Credits	6
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module in the profile 'Fluid Mechanics and Hydraulic Engineering' MSc <i>Civil Engineering</i>
Instruction Language	Groundwater Flow around Structures: English
	Interaction Flow and Hydraulic Structures: German
Duration	1 semester
Examinations/Partial Deliveries	Partial exam 'Groundwater Flow around Structures': oral exam, 30 min. Partial exam on 'Interaction Flow and Hydraulic Structures', oral exam, 30 min.
Special Features of the Exam	None
Grade	Average of partial exams
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	Students are able to analyze and calculate steady and unsteady flow forces on hydraulic structures. They can describe groundwater flow processes and derive flow parameters with common measurement calculations. Based on the acquired knowledge, they can analyze concepts for preventing groundwater-related structural damage in a critical manner. Students characterize and categorize flow-induced structural vibrations. They can apply their knowledge to application examples.

Courses	Title	Туре	HPW	Seme	ester	Lecturer	
	Groundwater Flow around Structures	L/T	1/1		S	F. Nestmann	
	Interaction Flow – Hydraulic Structures/ Wechselwirkung Strömung - Wasserbauwerke	L/T	1/1	W		C. Lang	
Content	In this module, the follow	ving top	ics are o	discuss	ed in	depth:	
	 Groundwater Flow aro Potential theory, Phreatic, leakage Hydraulic heave Structural adjust Sealing systems 	ground					
	Interaction Flow - Hydraulic Structures: Special attributes of sealing mechanisms (weirs, flood sluices, gates) will be introduced in hydraulic steel structures and their structural design and calculating of load are discussed.						
	Topics covered: - Determination of - Basics of design	- Determination of hydrostatic and hydrodynamic flow forces					
	 Overview of seal gates 	ing mec	hanism	s: Floo	d sluid	ces, weirs,	
	 Flow-induced structural vibrations Cavitation Gaskets 						
Workload	- Corrosion prever Attendance time: 60 h Preparation/follow-up: 6	0 h	00 h				
Literature/Learning							
Materials	Tokyo Naudascher; E, 1991, Hydrodynamic Forces, Balkema Pub., Rotterdam						
	Skript: C. Lang, Interakt	ion Strö	mung - V	Wasse	rbauw	erk	

Numerical Flow Modeling in Hydraulic Engineering/ Numerische Strömungsmodellierung im Wasserbau

Module Code	PB651
	PB001
Responsible Lecturer	DrIng. Peter Oberle
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Fluid Mechanics and Hydraulic Engineering' MSc Civil Engineering
Instruction Language	German
Duration	1 semester
Examinations/Partial Deliveries	Oral exam, 20 min
Special Features of the Exam	None
Grade	Grade of the written exam
Requirements	None
Recommendations	Basic knowledge of hydrology, hydraulic engineering and water management as well as channel hydraulics
Conditions	None
Learning Outcomes	- See German version

Courses	Title	Teaching mode	Hours/ week	Term	Lecturer
	Numerical Flow Modeling in Hydraulic Engineering/ Numerische Strömungs- modellierung im Wasserbau	L/T	2/2	W	P. Oberle, M. Musall
Content	- See German version				1
Workload	Attendance time: 60 h				
	Preparation/follow-up: 60 h				
	Examination + exam preparation: 60 h				
Literature/	Lecture notes				
Learning Materials					

Hydro Power Engineering/ Energiewasserbau

Module Code	PB653
Responsible Lecturer	DrIng. Peter Oberle
Level	4
ECTS Credits	6
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module in the profile 'Fluid Mechanics and Hydraulic Engineering' MSc <i>Civil Engineering</i>
Instruction Language	Teaching language: German, teaching material: English
Duration	1 semester
Examinations/Partial Deliveries	Oral exam, 20 min
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	None
Recommendations	Hydraulic Engineering and Water Management
Conditions	None
Learning Outcomes	Students are able to describe the different turbine types and can define selection criteria for their usage. They are able to reproduce the basic approaches in the planning and design of hydropower plants and to make own calculations to select turbines. They can select and apply the necessary tools in a methodical matter. Students are able to discuss the current political conditions in terms of energy policy with other students and support their personal opinion on these issues with technical arguments.

Courses	Title	Teaching mode	Hours/ week	Те	rm	Lecturer
	Hydro Power Engineering/ Energiewasserbau	L/T	3/1		S	P. Oberle
Content	The course explains the technical basics for the planning and design of hydropower plants. It covers the structural features of river power plants and high-pressure systems, the functions and selection criteria of different types of turbines and the electrical aspects of the plant. In addition, environmental issues and the political framework of hydropower will be discussed. The lectures are completed by current project studies and excursions.					
Workload	Attendance time: 60 h Preparation/follow-up: 60 h Examination + exam preparation: 60 h					
Literature/ Learning Materials	Lecture Notes Giesecke J., Mosonyi E., 20 Betrieb, Springer Verlag	-	aftanlagen,	Planu	ung, E	Bau und

Waterway Engineering/ Verkehrswasserbau

Module Code	PB655
Responsible Lecturer	DrIng. Andreas Kron
Level	4
ECTS Credits	6
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module in the profile 'Fluid Mechanics and Hydraulic Engineering' MSc <i>Civil Engineering</i>
Instruction Language	Teaching language: German, teaching material: English
Duration	1 semester
Examinations/Partial Deliveries	Oral exam, 20 min Ungraded learning control (seminar paper) as prerequisite for the exam
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	None
Recommendations	None
Conditions	None
Learning outcomes	Students are knowledgeable about the various types of navigable waterways and their hydraulic structures. They are able to describe and apply the hydraulic basics for the design of these hydraulic structures and the interaction between ship and waterway. Students can assign the tasks and responsibilities of waterway engineering to the administrative structure of the waterways and shipping.

Courses	Title	Туре	HPW	Sem	ester	Lecturer
	Waterway Engineering/ Verkehrswasserbau	L/T	2/2		S	A. Kron
Content	 Inland waterways Types of navigation locks and ship lifts Hydraulics and design of navigation locks and ship lifts 					
	Reinforcement of embankments, banks and bedsInteraction ship-waterway					
Workload	Attendance time: 60 h Preparation/follow-up: 30 h Seminar paper: 30 h Examination + exam preparation: 60 h					
Literature/ Learning Materials						

Flow and Sediment Dynamics in Rivers/ Fließgewässerdynamik und Feststofftransport

Module Code	PB633
Responsible Lecturer	DrIng. Frank Seidel
Level	4
ECTS Credits	6
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module in the profile 'Fluid Mechanics and Hydraulic Engineering' MSc <i>Civil Engineering</i>
Instruction Language	Flow Behavior of Rivers: English
	Morphodynamics: German and English
Duration	1 semester
Examinations/Partial	Oral exam, 30 min
Deliveries	Ungraded learning control as a prerequisite for the exam: Seminar paper in the course 'Flow Behavior of Rivers' (about 15 pages)
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	Students are able to name and explain the basic relationships and interactions between topography, flow and morphodynamics in natural streams. They can describe and apply the respective design approaches. Students are able to analyze the engineering design methods and combine this information with the basics of hydromechanics. They actively and independently inform themselves about the latest state in technology and can use adequate methods to solve engineering problems. They can present their findings and discuss the themes with specialists.

Courses	Title	Туре	HPW	Semester	Lecturer	
	Flow Behavior of Rivers	L/T	1/1	S	F. Seidel, S Wunder	
	Morphodynamics/ Morphodynamik	L/T	1/1	S	F. Nestmann	
Content	 In this module, the following topics are discussed in depth: Geomorphic cycle Space-time approach in morphology Anthropogenic influences on streams Vegetation hydraulics Approaches to interactions Bed load and sediment management in streams Practical examples 					
Workload	Attendance time: 60 h Seminar paper: 30 h Preparation/follow-up: 45 h Examination + exam preparation: 45 h					
Literature/ Learning Materials						

Water Resources Management – Feasibility Study/ Projektstudium: Wasserwirtschaftliche Planungen

Module Code	PB661
Responsible Lecturer	DrIng. Frank Seidel
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Fluid Mechanics and Hydraulic Engineering' MSc Civil Engineering
Instruction Language	German
Duration	1 semester
Learning Controls/Exams	Examination of other type, consisting of a written assignment (about 15 pages) and a presentation (15 min.)
Special Features of the Exam	None
Grade	Grade of the examination of other type
Requirements	None
Recommendations	Module 'Flow and Sediment Dynamics in Rivers (PB633)'
Conditions	None
Learning Outcomes	- See German version

Courses	Titel	Art	HPW	Semester	Dozent/in		
	Project Studies in Water Resources Management/Projektstudiu m: Wasserwirtschaftliche Planungen	L/T	2/2	W	F. Nestmann, F. Seidel		
Content	- See German version						
Workload	Attendance time: 30 h	30 h					
	Preparation/follow-up: 30	h					
	Examination + exam prep	am preparation (project report): 120 h					
Literature/ Learning Materials							

2.6 Profile C: Environmental System Dynamics & Management

	nvironmental Systems
Module Code	PC741
Responsible Lecturer	DrIng. Uwe Ehret
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Environmental System Dynamics and Management' MSc Civil Engineering MSc Geoecology
Instruction Language	English
Duration	1 semester
Examinations/Partial Deliveries	Examination of other type: Assignments (programming exercise and short report of about 2 pages) and final take- home exam (about 10 pages)
Special Features of the Exam	None
Grade	The module grade corresponds to the grade of the examination of other type, which is calculated from the points of the assignments and take-home exam
Requirements	None
Recommendations	Knowledge of programming with Matlab. Otherwise, it is strongly recommended to participate in the course 'Introduction to Matlab (CC772)'.
Conditions	None
Learning Outcomes	 Students are able to describe environmental systems as hierarchical subsystems of the earth system and to name the borders, state variables and processes of selected environmental systems with respect to water- and energy transport. Students know the fundamental laws of thermodynamics and can explain why and how these form the foundation to describe environmental system dynamics in general. Students know the basic mechanisms of self-organization. Based on this, they can explain how environmental systems can by themselves move away from thermodynamic equilibrium states by the buildup of structure. Students are able to independently set up computer models to simulate water- and energy dynamics in simple environmental systems. Students are able to solve problems and to present the related results in teamwork.

Thermodynamics of Environmental Systems

Courses	Title	Teaching mode	Hours/ week	Term	Lecturer	
	Thermodynamics of Environmental Systems	L/T	2/2	W	U. Ehret	
Content	environm determinis - Energy ar - Work and - The four I - Carnot lin - Fundame feedbacks - Entropy ir and differ - Independ energy-re simple nu	ntals of self-organization (po s, order parameters) n thermodynamics and inforr	ndaries, sy ystems) modynam ositive and mation the ental system of assign	ystem s ic equili ory: sim late the ems bas iments	brium /e hilarities water- and	
Workload	Attendance time: 60 h Preparation/follow-up: 20 h Homework, presentations: 60 h Take-home exam: 40 h					
Literature/ Learning Materials	 Prigogine, I. (1989): What is entropy? Naturwissenschaften, 76, 1-8, 10.1007/bf00368303. Kleidon, A. (2010): Life, hierarchy, and the thermodynamic machinery of planet Earth, Physics of Life Reviews, 7, 424-460. 					

Management of Water Resources and River Basins

Module Code	PC721
Responsible Lecturer	DrIng. Uwe Ehret
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Environmental System Dynamics and Management' MSc Civil Engineering MSc Geoecology
Instruction Language	English
Duration	1 semester
Examinations/Partial Deliveries	Examination of other type: Assignments (short reports of about 2 pages) and final take-home exam (application of a hydrological model and a report of about 15 pages)
Special Features of the Exam	None
Grade	The module grade corresponds to the grade of the examination of other type, which is calculated from the points of the assignments and take-home exam
Requirements	None
Recommendations	Knowledge of hydrology and engineering hydrology
Conditions	None
Learning Outcomes	Students are able to identify the components of tasks related to Water Management. They are able to formulate solutions for these tasks based on the principles of Integrated Water Resources Management (IWRM).
	Students are familiar with the principles, methods and limitations of environmental systems modeling and are able to set up and apply water balance models for given tasks of Water Resources Management. They are able to interpret the results and quantify and evaluate the related uncertainties. Students are able to solve problems and to present the related results in teamwork.

Courses	Title	Туре	HPW	Semester	Lecturer
	Management of Water Resources and River Basins	L/T	2/2	S	U. Ehret
Content	 Definition, scope and examples of Integrated River Basin Management Methods for Multi-Objective Decision Making (Utility Matrix) Hydrological Modeling: Environmental Systems Theory, Calibration and Validation, Sensitivity and Uncertainty Analysis Methods of Engineering Hydrology Computer-based application of hydrological models (HBV, Larsim): manual and automated calibration, Monte-Carlo- based uncertainty estimation, identification of design storm hydrographs Preparation of assignments and presentation in small groups. 				fatrix) y, Analysis HBV, arlo- storm
Workload Literature/	Attendance time: 60 h Preparation/follow-up: 20 h Homework, presentations: 60 h Take-home exam: 40 h				
Learning Materials					

Module Code	PC725
Responsible Lecturer	Prof. Erwin Zehe
Level	4
ECTS Credits	9
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Environmental System Dynamics and Management' MSc Geoecology
Instruction Language	English
Duration	1 semester
Examinations/Partial Deliveries	Oral exam, 30 min Ungraded learning controls as a prerequisite for the exam: Task- led homework (about 10 pages) and lab report
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	None
Recommendations	Module 'Water and Energy Cycles (AF701)' Module 'Experimental Hydrology (PC731)' Knowledge of programming with Matlab. Otherwise, it is strongly recommended to participate in the course 'Introduction to Matlab (CC772)'
Conditions	None
Learning Outcomes	Students are able to explain processes of transport and decomposition related to nutrients and pollutants in surface runoff and in the unsaturated zone of rural catchments.
	Students are able to independently apply analytical and process- based models: estimation of model parameters from field investigations, estimation of water- and substance fluxes and balance in the critical zone, statements on the risks related to contaminant mobilization in natural soils.
	Students are able to evaluate the limits of applicability of modeling approaches in natural, heterogeneous soils.

Transport and Transformation of Contaminants in Hydrological Systems

Courses	Title	Teaching mode	Hours/ week	Term	Lecturer
	Transport and Transformation of Contaminants in Hydrological Systems	L/T	2/3	S	E. Zehe, J. Wienhöfer
Content	Transport processes surface runoff, and m - Advective-dis heterogeneou - Particulate tra - Adsorption - Chemical and soils - Modeling con using analytic - Risk assessm residence tim - Estimation of - Parameteriza - Breakthrough Simulation of water a models Independently condu simple simulation teo Lab experiments: set conduction of transpo	novement of persive tran us soils ansport by e I microbial p taminant tra cal models nent for pest es, adsorpti model paration curves and substance cted risk-as chniques cup of a undi	soil wate sport in h rosion rocesses insport (e. icides in s on, decay meters fro rption isof ce transpo sessment isturbed s	r: omogene of reactio .g. pestici soils (tran) om field e therms ort with pr s for pes	eous and on and decay in des) in soils sport, xploration rocess-based ticides using
Workload	Attendance time: 75 h Preparation/follow-up: 45 h Homework, lab report: 90 h Examination + exam preparation: 60 h				
Literature/Learning Materials	Jury, W. and Horton, R. (2004): Soil physics. John Wiley Hillel, D. (1995): Environmental Soil Physics. Academic Press Fritsche, W. (1998) Umweltmikrobiologie, Grundlagen und Anwendungen. Gustav Fischer Verlag, 248pp.				

Experimental Hydrol	ogy
Module Code	PC731
Responsible Lecturer	Dr. Jan Wienhöfer
Level	4
ECTS Credits	9
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Environmental System Dynamics & Management' MSc Geoecology
Instruction Language	English
Duration	1 semester
Examinations/Partial Deliveries	Partial Exam 'Experimental Hydrology and Process Monitoring in Environmental Systems' (6 CP): Examination of other type - written report (about 15 pages) and presentation of the results of laboratory and field work
	Partial Exam 'Isotope Hydrology' (3 CP): Examination of other type - written report (about 10 pages) and presentation of the results of laboratory and field work
Special Features of the Exam	None
Grade	Weighted average of the grades of the partial exams according to credit points
Requirements	None
Recommendations	Knowledge of hydrology
Conditions	None
Restrictions	The courses in this module require a minimum number of 6 and a maximum number of 30 participants. Please register via the student portal (Studierendenportal). Only in case that this should not be possible: Please register via e-mail to the responsible lecturer. Participants are selected according to their year of study and in the following order: Students of <i>Water</i> <i>Science and Engineering</i> , students of <i>Geoecology</i> , other.
Learning Outcomes	Students can name the processes of the terrestrial water cycle and explain their influence on catchment-scale landscape evolution. Students know and understand measurement principles for catchment properties, catchment states, and water fluxes. They are able to independently plan and conduct measurements on various scales (soil column, plot, hillslope, catchment) in the field and the laboratory. Students can analyze observation data with statistical methods, and are able to quantify and evaluate the related uncertainties. Students are able to solve problems and to present the related results in teamwork.

Courses	Title	Туре	HPW	Sem	ester	Lecturer
	Experimental Hydrology and Process Monitoring in Environmental Systems	L/T/P	4		S	J. Wienhöfer, U. Ehret
	Isotope Hydrology	L/T	2		S	J. Klaus
Content	Experimental Hydrology and Pro Systems: - Fundamentals of environme observations (scales, uncer	ental sy	stems	•		
	 Literature study and discussion related to environmental monitoring Hydrological measurement devices in field and laboratory: Discharge, soil moisture, infiltration, matric potential, ground water Statistical data analysis and error analysis 					tory:
	 Isotope Hydrology: Fundamentals of isotope hydrology of ²H and ¹⁸O in the water cycle Application examples and literature study on stable water isotopes in (eco-)hydrological process studies Examples of further isotopes used in hydrological process studies: ³H, ¹⁷O, ¹⁵N Analysis and evaluation of isotope data 				ater isotopes	
	Both: Lab and field work (several days) where students conduct hydrological measurements and infiltration- and tracer experiments. They analyze the obtained data statistically. The results are documented in a report, and presented and critically discussed in a colloquium.					
Workload	Attendance time (lecture, lab course and field trip): 100 h Preparation/follow-up: 80 h Report and colloquium: 90 h					
Literature/ Learning Materials	Lecture notes					

River Basin Modeling	g
Module Code	PC341
Responsible Lecturer	DrIng. Stephan Fuchs
Level	4
ECTS Credits	6
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module in the profile 'Environmental System Dynamics and Management'
	MSc Civil Engineering
Instruction Language	English
Duration	1 semester
Examinations/Partial Deliveries	Examination of other type: Written report (of about 10 pages) and a presentation
Special Features of the Exam	None
Grade	Grade of the examination of other type
Requirements	None
Recommendations	Module 'Urban Water Infrastructure and Management (AF301)' Module 'Water Ecology (CC371)'
Conditions	None
Learning Outcomes	Students are able to explain the basic relationships between water-driven material cycles in river basins and their budget in aquatic ecosystems. They are able to analyze the impact of anthropogenic activities on water condition and quality. Students gain knowledge regarding transport pathways of substances and biochemical and physical interactions in water bodies in order to formulate mathematical model approaches. Using simulation models, they are able to quantify substance emissions; to predict the impact from external influences on the water quality relevant processes and; to perform different scenario analysis. Students are capable of evaluating model results in terms of their plausibility and uncertainty.

Courses	Title	Туре	HPW	Sem	ester	Lecturer
	Mass Fluxes in River Basins	L	2		S	S. Fuchs
	Modeling Mass Fluxes in River Basins	L/T	2	W		-
Content	Mass Fluxes in River Basin	IS:				
	This module provides students with a broad-based understanding of the fundamentals of materials flows (N, P, pollutants) and their relevant transport pathways in river basins. Different modeling approaches for a quantitative description of the processes will be presented.					
	Modeling Mass Fluxes in R	iver Basir	is:			
	Students receive a single-use (Modeling of Regionalized Er their own model in small grou	nissions).	They have to	develo	p and i	
Workload	Attendance time: 60 h					
	Preparation/follow-up: 60 h					
	Examination + exam prepara	tion (proje	ct work + pre	sentatio	on): 60	h
Literature/ Learning	/ Schwoerbel, J. (1993): Einführung in die Limnologie, 7. Aufl., Fischer Verlag, Stuttgart					
Materials	Kummert, R. (1989): Gewässer als Ökosysteme: Grundlagen des Gewässerschutzes, 2. Aufl., Teubner Verlag, Stuttgart					
	Stumm, W.; Morgan, J.J. (1996): Aquatic Chemistry – Chemical equilibria and rates in natural waters, Wiley Interscience, NY					

Aquatic Ecosystems/ Gewässerlandschaften	
Modul Code	PC761
Responsible Lecturer	Dr. Charlotte Kämpf
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Environmental System Dynamics and Management' MSc Civil Engineering MSc Geoecology
Instruction Language	German (material partly in English)
Duration	1 Semester
Examinations/Partial Deliveries	- See German version
Special Features of the Exam	- See German version
Grade	- See German version
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	- See German version

Courses	Title		Туре	HP W	Sem I	 Lecturer
	Aquati Ecosys en	c stems/Gewässerlandschaft	V/S/ E	4	W	Ch. Kämp f
Content	-	See German version				
Workload	-	See German version				
Literature/Learnin g Materials						

Protection and Use of Riverine Systems

Modul Code	PC762
Responsible Lecturer	Dr. Charlotte Kämpf
Level	4
ECTS Credits	6
Study Program	Master Water Science & Engineering, compulsory elective module in the profile 'Environmental System Dynamics and Management'
Instruction Language	English
Duration	1 Semester
Examinations/Partial Deliveries	Examination of other type: Presentation (about 15 min) and written report (of about 2500 words) on a selected topic Ungraded learning control as prerequisite for the exam:
	Literature annotation (about 150 words), introductory presentation (about 10 min), and excursion report (about 2 pages)
Special Features of the Exam	None
Grade	Grade of the examination of other type
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	Students are able to rank interdisciplinary texts on riverine systems according to their relevance, and formulate relevant questions on this topic. Students can research systematically on a scientific problem.
	They are able to put the materials in the context of integrated management strategies and current water resources problems to work on solutions for adapting to regional conditions.

Courses	Title	Туре	HPW	Sem	ester	Lecturer	
	Protection and Use of Riverine Systems	V/E	3		S	F. Nestmann, S. Fuchs, Ch. Kämpf	
Content	Integrated Wate	er Mana	nemen	+ -			
ooment	-		-	 gement pr	oiects		
	•			mall hydr	•	vstems)	
	- Water di		0 (•	op o o . o	, ,	
	- Conside environn		the geo	ographical	, social a	nd political	
	Quality of surfa	ace wat	ers:				
	•	-				nd agriculture; ater protection	
	International Nature Conservation:						
	- FFH Dire concepts	Directive, Natura 2000, wildlife conservation pts				vation	
	- Renatura	ation co	ncepts				
Workingload	Attendance time	e: 40 h (seminar	and excu	rsion)		
	Preparation/follow-up: 40 h						
	Exam prerequisite (ungraded learning control): 40 h						
	Exam and exam	n prepar	ation:60	h			
Literature/Learning Materials							

Groundwater Management

Module Code	PC561
Responsible Lecturer	PD Dr. Ulf Mohrlok
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Environmental System Dynamics and Management'
Instruction Language	English
Duration	2 semesters, starting in summer semester
Examinations/Partial Deliveries	Partial examination 'Groundwater Hydraulics' (3 CP): oral exam, 30 min
	Partial examination 'Numerical Groundwater Modeling' (3 CP): examination of other type: project report (10 to 15 pages) and presentation (10 to 15 min.)
Special Features of the Exam	None
Grade	Average of grades of the partial examinations
Requirements	None
Recommendations	Fundamental knowledge in fluid mechanics, hydrology, solute transport and numerical methods
Conditions	None
Learning Outcomes	Based on the understanding of the hydrogeologic conditions and the fluid mechanical processes in the subsurface, students can characterize several kinds of groundwater systems. They can quantify the relevant flow and transport processes for different problems of groundwater quantity and quality with simple analytical and numerical methods. Hence, they are able to conceive and evaluate the important relationships for the management of groundwater resources.

Courses	Title	Туре	HPW	Sem	ester	Lecturer
	Groundwater Hydraulics	L/T	2		S	U. Mohrlok
	Numerical Groundwater Modeling	Т	2	W		U. Mohrlok
Content	Groundwater Hydraulics:					
	 Fluid mechanical proc 	esses i	in porol	us med	dia	
	 Groundwater flow: reg well 	jional, p	ootentia	l flow,	flow t	owards a
	 Processes of groundw 	ater re	charge			
	 Solute transport proce 	esses				
	- Groundwater manage	ment: v	vell cate	chmen	its, pro	otection
	zones, groundwater pollution, salt water int				trusio	n
	Numerical Groundwater Modeling:					
	 Numerical methods 					
	 Space and time discret 	etizatior	ו			
	 Accuracy, stability 					
	 Working on a study pr 	oject				
Workload	Attendance time: 75 h					
	Preparation/follow-up: 30 h					
	Term paper (modeling project	t): 45 h				
	Examination + exam preparat	tion: 30	h			
Literature/Learning	Bear, J. (1979). Hydraulics of	Groun	dwater.	McGr	aw Hi	II.
Materials	Chiang, WH., Kinzelbach, W. & R. Rausch (1998). Aquifer simulation model for Windows - Groundwater flow and transport modeling, an integrated program. Berlin,				uifer	
					and	
	D.:Gebrüder Borntraeger. Fetter, C.W. (1999). Contaminant Hydrogeology , 2/e. Upper Saddle River, NJ, U.S.A.: Prentice Hall.					
						Ipper
	Schwartz, F. and H. Zhang (2 Water. New York, NY, U	,				ound

Hydrogeology – Field and Laboratory Methods/ Hydrogeologie – Gelände- und Labormethoden

-	
Module Code	PC821
Responsible Lecturer	Dr. Nadine Göppert
Level	4
ECTS Credits	6
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module in the profile 'Environmental System Dynamics and Management' MSc <i>Applied Geosciences</i>
Instruction Language	German
Duration	1 semester
Learning Controls/Exams	Examination of other type: presentation in the 'Preparatory Seminar' (3 CP) and written report on the results of the 'Field and Laboratory Exercises' (3 CP)
Special Features of the Exam	None
Grade	Grade of the examination of other type
Requirements	None
Recommendations	Module 'Hydrogeology (AF801)' is strongly recommended.
Conditions	None
Restrictions	The courses in this module have limited capacity. Please register using ILIAS.
Learning Outcomes	- See German version

Courses	Title	Туре	HPW	Se	mester	Lecturer
	Preparatory Seminar/ Vorbereitendes Seminar	S	1		S	N.Göppert T. Liesch
	Field and Laboratory Excercises/ Gelände- und Laborübungen	Ü	2		S	J. Klinger
Content	- See German version	·				
Workload	Attendance time: 45 h					
	Preparation/follow-up: 65 h					
	Examination + exam preparat	ion: 70	h			
Literature/	- See German version					
Learning Materials						

Hydrogeology – Groundwater Modeling/ Hydrogeologie - Grundwassermodellierung

	50001
Module Code	PC831
Responsible Lecturer	Dr. Tanja Liesch
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Environmental System Dynamics and Management' MSc Applied Geosciences
Instruction Language	German
Duration	1 semester
Learning Controls/Exams	Examination of other type: Written report and presentation on an exercise on groundwater modeling
Special Features of the Exam	None
Grade	Grade of the examination of other type
Requirements	None
Recommendations	Module 'Hydrogeology (AF801)' is strongly recommended.
Conditions	None
Restrictions	The courses in this module have limited capacity. Please register using ILIAS.
Learning Outcomes	- See German version

Courses	Title	Туре	HPW	Sem	ester	Lecturer
	Groundwater Modeling/ Grundwassermodellierung	L/T	2/2	W		T. Liesch
Content	- See German version	-	-	-	·	
Workload	Attendance time: 60 h Preparation/follow-up: 60 h					
	Examination + exam preparation: 60 h					
Literature/						
Learning Materials						

Karst and Isotopes/ Karst und Isotope

Karst und Isotope	
Module Code	PC841
Responsible Lecturer	Prof. Dr. Nico Goldscheider
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module in the profile 'Environmental System Dynamics and Management' MSc Applied Geosciences
Instruction	German
Language	
Duration	2 semesters, starting in winter semester
Learning Controls/Exams	Written exam, 120 min
Special Features of the Exam	None
Grade	Grade of the written exam
Requirements	None
Recommendations	Module 'Hydrogeology (AF801)' is strongly recommended.
Conditions	None
Learning Outcomes	- See German version

Courses	Title	Туре	HPW	Sem	ester	Lecturer
	Karst Hydrogeology/ Karsthydrogeologie	L/T	2	W		N. Goldscheider
	Field Trip Karst Hydrogeology/Exkursion zur Karsthydrogeologie	E	3 days		S	N. Goldscheider
	Isotope Methods in Hydrogeology/ Isotopenmethoden in der Hydrogeologie	L/T	2 days		S	T. Himmelsbach
Workload	Attendance time: 60 h					
Workload	Attendance time: 60 h Preparation/follow-up: 70) h				
Workload			50 h			
Workload Literature/ Learning	Preparation/follow-up: 70	paration: 007): Kar	st Hydro	geolog	ly and	
Literature/	Preparation/follow-up: 70 Examination + exam pre Ford, D., Williams, P. (20	paration: 007): Kar ley, 576 D. (2007	st Hydrog S.): Method		-	

Restoration. McGraw-Hill, New York, 708 p

Oxford University Press, New York, NY, 464 S.

White, W.B. (1988): Geomorphology and Hydrology of Karst Terrains.

Internet: www.iah.org/karst

2.7 Additional Supplementary Modules

Thermal Use of Groundwater

Module Code	SM879
Responsible Lecturer	Prof. Dr. Philipp Blum
Level	4
ECTS Credits	3
Study Program	MSc Water Science & Engineering, compulsory elective module as supplementary module within the profile studies
Instruction Language	English
Duration	1 Semester
Learning Controls/Exams	Oral exam, 30 min
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	None
Recommendations	Knowledge of programming with Matlab. Otherwise, it is strongly recommended to participate in the course 'Introduction to Matlab (CC772)'.
Conditions	None
Learning Outcomes	Students get familiar with the topic 'Thermal Use of Groundwater' and will be able to integrate their knowledge in particular in an urban water energy nexus. They get knowledge about the fundamentals of thermal transport in groundwater and their application to shallow geothermal systems such as ground source and groundwater heat pump systems. Hence, analytical and numerical simulations will be performed using Excel and Matlab scripted codes. They will be able to perform their own simulations and will be able to design shallow geothermal systems in context of the water energy nexus.

Courses	Title	Teaching mode	Hours/ week	Term	Lecturer	
	Thermal Use of Ground- water	L/T	2	W	P. Blum	
Content	The content of this modul 'Thermal Use of Shallow as follows: - Fundamentals (th - Analytical solutio - Numerical solutio - Long-term operal - Field methods sur- response tests (T - Case studies and Analytical simulations arr scripted codes. In additional are performed using exists students are actively plata application up to the long Hence, a final planning r	r Groundwa neory of hea ns for close ons for shall bility and su ich as thern (RT) d application e performed on, calibration sting field an nning an ow g-term performed	ter' and i at transpo- ed and op low geoth ustainabil nal traced nal traced na using E on and va nd monite wn geoth ormance	s therefo ort in the pen syste nermal sy lity r tests ar Excel and alidation oring dat ermal sys of such a	re structured subsurface) ms /stems nd thermal I Matlab exercises a. Finally, the stem from the	
Workload	Attendance time: 30 h Preparation/follow-up: 30 h Examination + exam preparation: 30 h					
Literature/ Learning Materials	Stauffer, F., Bayer, P., Blum, P., Molina-Giraldo, N., Kinzelbach W. (2013): Thermal Use of Shallow Groundwater. 287 pages, CRC Press.					
	Other documents such a on ILIAS	as recent pu	Iblication	s are ma	de available	

Earthwork and Embankment Dams/ Erdbau und Erddammbau

Module Code	SM961
Responsible Lecturer	Prof. DrIng. Theodoros Triantafyllidis
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module as supplementary module within the profile studies
Instruction Language	German
Duration	2 semesters; starting in winter semester
Learning Controls/Exams	Oral exam, 40 min
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	None
Recommendations	None
Conditions	Mutually exclusive with the modules <i>bauiM5P2-ERDGB</i> and <i>bauiM5S04-GWDAMM</i> from the MSc <i>Civil Engineering</i>
Learning Outcomes	- See German version

Courses	Title	Туре	HPW	Seme	ester	Lecturer
	Grundlagen des Erd- und Dammbaus	L/T	2	W		A. Bieberstein
	Erddammbau	L/T	2		S	A. Bieberstein
Content	- See German version					
Workload	Attendance time: 60 h					
	Preparation/follow-up: 60 h					
	Examination + exam preparation: 60 h					
Literature/	- See German version					
Learning Materials						

Environmental Geotechnics/ Umweltgeotechnik

Onwengeoteennik	
Module Code	SM962
Responsible Lecturer	Prof. DrIng. Theodoros Triantafyllidis
Level	4
ECTS Credits	6
Study Program	MSc Water Science & Engineering, compulsory elective module as supplementary module within the profile studies MSc Civil Engineering
Instruction Language	German
Duration	1 semester
Learning Controls/Exams	- See German version
Special Features of the Exam	None
Grade	- See German version
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	- See German version

Courses	Title	Туре	HPW	Semester	Lecturer
	Übertagedeponien	L/T	2	W	A. Bieberstein
	Altlasten - Unter- suchung, Bewertung und Sanierung	L	2	W	A. Bieberstein, T. Neumann, H. Würdemann, U. Mohrlok, S. Norra, M. Reinhard, H. Dörr
Content	- See German ver	rsion			
Workload	Attendance time: 60	h			
	Excursions: 10 h				
	Preparation/follow-up	o: 50 h			
	Examination + exam	prepara	ation: 60	h	
Literature/	- See German ver	rsion			
Learning Materials					

General Meteorology/ Allgemeine Meteorolog	gie
Module Code	SM971
Responsible Lecturer	Prof. Dr. Christoph Kottmeier
Level	2
ECTS Credits	6
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module as supplementary module within the profile studies (BSc <i>Meteorology</i>)
Instruction Language	German
Duration	1 semester
Learning Controls/Exams	- See German version
Special Features of the Exam	None
Grade	The module is not graded (pass/fail).
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	- See German version

Courses	Title	Туре	HPW	Semester	Lecturer
	Allgemeine	L	3	W	C. Kottmeier
	Meteorologie				
	(4051011)				
	Übungen zur	Т	2	W	C. Kottmeier,
	Allgemeinen				E. Hubel
	Meteorologie				
	(4051012)				
Content	- See Germa	an version	l		
Workload	Attendance time: 7	′5 h			
	Preparation/follow-	-up: 105 h	1		
Literature/					
Learning					
Materials					

Meteorological Hazards and Climate Change/ Meteorologische Naturgefahren und Klimawandel

Module Code	SM972
Responsible Lecturer	Prof. Dr. Peter Knippertz
Level	4
ECTS Credits	6
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module as supplementary module within the profile studies
Instruction Language	German/English
Duration	1 semester
Learning Controls/Exams	Partial exam 'Meteorological Hazards' (3 CP): Oral exam, 30 min Partial exam 'Advanced Seminar IPCC progress report' (3 CP): Examination of other type (presentation of about 30 min
Special Features of the Exam	None
Grade	Weighted average of the grades of the partial exams according to credit points
Requirements	None
Recommendations	Basic knowledge of meteorology, for example module "Allgemeine Meteorologie (SM971)", and basic knowledge on the climate system
Conditions	None
Learning Outcomes	Students are able to describe and critically discuss causes and effects of climate change. The can assess the potential of extreme events and their effects using climate and weather data or predictions, respectively, for different regions and seasons. Furthermore, they are able to professionally present and discuss scientific findings from the literature and their own work.

Courses	Title	Туре	HPW	Seme	ester	Lecturer
	Meteorologische Naturgefahren/ Meteorological Hazards	L	2		S	M. Kunz
	Hauptseminar IPCC Sachstands- bericht/Advanced Seminar IPCC Assessment Report	S	2		S	H. Fink, M. Höpfner
Content	Meteorological Haz Extreme events, extreme events, extreme thunderstorms, supe hail, extreme events	atropica rcells, t	ornadoes	s, conv	•	
	Advanced Seminar Causes of climate ch system, radiation eff from global climate r	nange, e ects and	external a	and inte	ernal f	actors in the climate
	Systematic treatment the Intergovernment IPCC process, backgreport, presentations	al Pane ground	I on Clim	ate Ch on on t	ange: he de	Structure of the velopment of the
Workload	Attendance time: 60	h				
	Preparation/follow-u	o includ	ing prese	entatior	n: 90 k	ו
	Examination + exam	prepar	ation: 30	h		
Literature/ Learning Materials						

2 Module Descriptions

Applied Meteorology: Turbulent Transport/ Angewandte Meteorologie: Turbulente Ausbreitung

Module Code	SM973
Responsible Lecturer	Dr. Bernhard Vogel
Level	4
ECTS Credits	6
Study Program	MSc <i>Water Science & Engineering</i> , compulsory elective module as supplementary module within the profile studies MSc <i>Meteorology</i>
Instruction Language	German
Duration	1 Semester
Examinations/Partial Deliveries	- See German version
Special Features of the Exam	None
Grade	- See German version
Requirements	None
Recommendations	Basic knowledge of meteorology, for example module "Allgemeine Meteorologie (SM971)"
Conditions	None
Learning Outcomes	- See German version

Courses	Title	Туре	HPW	Semeste	r Lecturer
	Turbulente Ausbreitung (4052081)	L	2	S	B H. Vogel, B. Vogel
	Übungen zu Turbulente Ausbreitung (4052082)	Т	1	S	6 H. Vogel, B. Vogel
Content	- See German v	ersion			
Workload	Attendance time: 4	5 h			
	Preparation/follow-u	up includ	ing exerc	cises: 105	h
	Examination + exar	n prepar	ation: 30	h	
Literature/					
Learning Materials					

2.8 Study Project

Study Project/ Studienprojekt

otudienprojekt	
Module Code	SP111
Responsible Lecturer	Prof. Dr. Markus Uhlmann (speaker of the study program)
Level	5
ECTS Credits	15
Study Program	MSc Water Science & Engineering
Language	English or German. On agreement with the examiner(s), the 'Study Project' can also be written in other languages.
Duration	1 semester
Examinations/Partial Deliveries	Examination of other type: written report (about 30 pages) and final presentation (20 minutes)
Special Features of the Exam	None
Grade	Grade of the examination of other type
Requirements	None
Recommendations	The knowledge and technical and interdisciplinary skills needed to work on the selected topic and to prepare the 'Study Project' should have been acquired.
Conditions	None
Learning Outcomes	Students are able to work on an interdisciplinary, water- related project using scientific methods.
	They can, with guidance, plan, structure, prepare, conduct, and document a study. They are able to select appropriate methods for the solution of the given problem.
	Students are able to work self-organized and structured. They possess skills in the field of project management, teamwork and presentation, both orally and in writing.

Literature/ Learning Materials	
Workload	3 months (450 h)
	Students are invited to make suggestions for topics. It is possible to conduct the project in cooperation with external partners.
	The project can also be worked on in student teams. In this case, each student works on a particular aspect of an overall problem as part of a joint project.
Content	Conducting a water-related, interdisciplinary project work. This may be of a theoretical and/or experimental type. The focus is on the development of conclusions using scientific methods, project management and presentation of the results.

2.9 Master's Thesis

Master's Thesis/ Masterarbeit

Module Code	MT199
Responsible Lecturer	Prof. Dr. Markus Uhlmann (speaker of the study program)
Level	5
ECTS Credits	30
Study Program	MSc Water Science & Engineering
Language	English or German; On request, the Master's Thesis can also be written in another language.
Duration	1 semester
Examinations/Partial Deliveries	Written report (Master's Thesis) and presentation
Special Features of the Exam	None
Grade	The overall grade results from the evaluations of the thesis and the final presentation.
Requirements	Students have successfully completed modules with a minimum of 42 ETCS credits.
Recommendations	The module 'Study Project' should be completed. The knowledge and technical and interdisciplinary skills needed to work on the selected topic and to prepare the thesis should have been acquired.
Conditions	None
Learning Outcomes	Students are able to independently develop and carry out a scientific work. To this end, they deal with the latest state of research and apply the knowledge and the methods acquired during the study course. They can discuss and evaluate the obtained results, and present them in writing as well as defend the work in a presentation.

Content	 The Master's Thesis is an original scientific study, and includes the theoretical and/or the experimental work on a complex problem using scientific methods. Students may choose a subject area, which determines the topic of their thesis. Students are invited to make suggestions for topics. It is possible to conduct the project in cooperation with external partners, for example an external research institution or an institution from the professional background.
Workload	6 months (900 h)
Literature/ Learning materials	

3 Abbreviations

- AF Advanced Fundamentals
- CC Cross-Cutting Methods & Competencies
- CP Credit Points
- E English
- E Excursion
- EoT Examination of Other Type
- ER Examination Regulations
- G German
- G/E Documents: English/Teaching Language: German
- HPW Class Hours per Week
- L Lecture
- LC Learning Control
- oE Oral Examination
- P Practical Training
- P Profile Studies
- P/SM Profile Studies/Supplementary Modules
- PA Profile A
- PB Profile B
- PC Profile C
- PD Profile D
- S Seminar
- S Summer Semester
- SP Study Project
- SP Study Project
- SPO Studien- und Prüfungsordnung
- T Tutorial
- uLC Ungraded Learning Control
- W Winter Semester
- wE Written Examination

Index 4

Advanced Computational Fluid
Mechanics 98
Advanced Fluid Mechanics
Analysis of Turbulent Flows
Applied Meteorology: Turbulent Transport/ Angewandte Meteorologie: Turbulente Ausbreitung
Applied Microbiology 80
Aquatic Ecosystems/ Gewässerlandschaften
Biofilm Systems 92
Data Analysis and Environmental Monitoring 46
Earthwork and Embankment Dams/ Erdbau und Erddammbau 140
Environmental Communication/ Umweltkommunikation 58
Environmental Fluid Mechanics 94
Environmental Geotechnics/ Umweltgeotechnik
Experimental Hydraulics and Measuring Techniques/ Versuchswesen und Strömungsmesstechnik
Experimental Hydrology 122
Experiments in Fluid Mechanics 44
Flow and Sediment Dynamics in Rivers/ Fließgewässerdynamik und Feststofftransport
Fundamentals of Water Quality 30
General Meteorology/ Allgemeine Meteorologie
Groundwater Management

Hydraulic Engineering
Hydraulic Structures104
Hydro Power Engineering/ Energiewasserbau108
Hydrogeology – Field and Laboratory Methods/ Hydrogeologie – Gelände- und Labormethoden.132
Hydrogeology – Groundwater Modeling/ Hydrogeologie - Grundwassermodellierung134
Hydrogeology42
Industrial Water Management88
Infrastructure Planning – Socio-economic & Ecological Aspects56
Instrumental Analysis50
Introduction to GIS for Students of Natural, Engineering and Geo Scences/ Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen
Introduction to Matlab60
Karst and Isotopes/ Karst und Isotope136
Lecture Series on Environmental Systems Modeling28
Management of Water Resources and River Basins118
Master's Thesis/ Masterarbeit 152
Membrane Technologies and Excursions78
Meteorological Hazards and Climate Change/ Meteorologische Natur- gefahren und Klimawandel 146
Microbial Diversity/Mikrobielle Diversität52

Water Science & Engineering (MSc) Module Handbook, Winter Semester 2016/2017

Module Language Centre72
Numerical Flow Modeling in Hydraulic Engineering/ Numerische Strömungsmodellierung im Wasserbau
Numerical Fluid Mechanics
Numerical Mathematics for Informatics and Engineering/ Numerische Mathematik für die Fachrichtungen Informatik und Ingenieurwesen
Practical Course in Water Technology82
Principles of Sustainable Water Management54
Probability and Statistics 62
Process Engineering in Wastewater Treatment84
Protection and Use of Riverine Systems128
Remote Sensing and Positioning 64
River Basin Modeling 124
Spatial Data Infrastructures and Web Services/ Geodateninfrastrukturen und Webdienste68
Study Project/ Studienprojekt 150
Technical Hydraulics/ Technische Hydraulik100
Thermal Use of Groundwater 138
Thermodynamics of Environmental Systems116
Transport and Transformation of Contaminants in Hydrological Systems120
Urban Water Infrastructure and Management