Module Handbook

Water Science and Engineering (Master of Science (M.Sc.), ER/SPO 2016)

Summer term 2024
Date: 19/03/2024

KIT DEPARTMENT OF CIVIL ENGINEERING, GEO- AND ENVIRONMENTAL SCIENCES
Table Of Contents

1. Curriculum
- 1.1. Objectives of the master degree program .. 7
- 1.2. Structure of the master degree program .. 8
 - 1.2.1. Advanced Fundamentals (AF), compulsory subject .. 9
 - 1.2.2. Cross-Cutting Methods & Competencies (CC), compulsory subject 10
 - 1.2.3. Profile Studies (P) ... 11
 - 1.2.4. Study Project, compulsory subject .. 15
 - 1.2.5. Master’s Thesis/Masterarbeit .. 15
 - 1.2.6. Interdisciplinary Qualifications .. 15
 - 1.2.7. Additional accomplishments .. 15
- 1.3. Module selection, individual curriculum & mentoring .. 16
- 1.4. Exams and Learning Controls .. 16
 - 1.4.1. Registration .. 16
 - 1.4.2. Cancellation ... 16
 - 1.4.3. Repetition .. 16
- 1.5. Recognition of accomplishments ... 17
 - 1.5.1. Recognition of already obtained credits ... 17
 - 1.5.2. Accomplishments obtained outside of the Higher Education System 17
- 1.6. Calculation of grades, final grade ... 17
- 1.7. Semester abroad ... 17
- 1.8. Special circumstances ... 17

2. Contact persons .. 18

3. Current changes .. 19

4. Modules .. 20

4.2. Fundamentals of Water Quality [WSEM-AF201] - M-CIWVT-103438 .. 21

4.3. Urban Water Infrastructure and Management [WSEM-AF301] - M-BGU-103358 .. 22

4.6. Hydraulic Engineering [WSEM-AF601] - M-BGU-103376 .. 26

4.15. Integrated Infrastructure Planning [WSEM-CC791] - M-BGU-103380 .. 42

4.16. Environmental Communication [WSEM-CC792] - M-BGU-101108 .. 44

4.22. Introduction to GIS for Students of Natural, Engineering and Geo Sciences [WSEM-CC933] - M-BGU-101846 .. 53

4.23. Geodata Infrastructures and Web-Services [WSEM-CC935] - M-BGU-101044 .. 54

4.25. Language Skills 1 (2 CP) [WSEM-CC949] - M-BGU-103466 .. 56

4.26. Membrane Technologies in Water Treatment [WSEM-PA221] - M-CIWVT-103407 .. 57

4.27. Water Technology [WSEM-PA222] - M-BGU-105380 .. 58

4.28. Practical Course in Water Technology [WSEM-PA223] - M-CIWVT-103440 .. 59

4.29. Biofilm Systems [WSEM-PA224] - M-BGU-103440 .. 60

4.30. Industrial Wastewater Treatment [WSEM-PA225] - M-CIWVT-105903 .. 61

4.31. Wastewater Treatment Technologies [WSEM-PA321] - M-BGU-104917 .. 64

4.32. Stormwater Management [WSEM-PA322] - M-BGU-106112 .. 66

4.33. Modeling Wastewater Treatment Processes [WSEM-PA323] - M-BGU-106813 .. 68

4.34. Water Distribution Systems [WSEM-PA621] - M-BGU-104100 .. 70

Water Science and Engineering (Master of Science (M.Sc.), ER/SPO 2016)
Module Handbook as of 19/03/2024
Table Of Contents

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSEM-PA982</td>
<td>Applied Microbiology</td>
<td>72</td>
</tr>
<tr>
<td>WSEM-PB421</td>
<td>Environmental Fluid Mechanics</td>
<td>73</td>
</tr>
<tr>
<td>WSEM-PB522</td>
<td>Advanced Computational Fluid Dynamics</td>
<td>74</td>
</tr>
<tr>
<td>WSEM-PB523</td>
<td>Fluid Mechanics of Turbulent Flows</td>
<td>76</td>
</tr>
<tr>
<td>WSEM-PB524</td>
<td>Modeling of Turbulent Flows - RANS and LES</td>
<td>77</td>
</tr>
<tr>
<td>WSEM-PB631</td>
<td>Hydraulic Structures</td>
<td>78</td>
</tr>
<tr>
<td>WSEM-PB634</td>
<td>River Processes</td>
<td>80</td>
</tr>
<tr>
<td>WSEM-PB653</td>
<td>Experimental Hydraulics and Measurement Techniques</td>
<td>82</td>
</tr>
<tr>
<td>WSEM-PB654</td>
<td>Numerical Flow Modeling in Hydraulic Engineering</td>
<td>84</td>
</tr>
<tr>
<td>WSEM-PB655</td>
<td>Hydro Power Engineering</td>
<td>85</td>
</tr>
<tr>
<td>WSEM-PB656</td>
<td>Waterway Engineering</td>
<td>86</td>
</tr>
<tr>
<td>WSEM-PB661</td>
<td>Project Studies in Water Resources Management</td>
<td>87</td>
</tr>
<tr>
<td>WSEM-PCE34</td>
<td>River Basin Modeling</td>
<td>88</td>
</tr>
<tr>
<td>WSEM-PCE46</td>
<td>Groundwater Management</td>
<td>90</td>
</tr>
<tr>
<td>WSEM-PCE56</td>
<td>Subsurface Flow and Contaminant Transport</td>
<td>94</td>
</tr>
<tr>
<td>WSEM-PCE64</td>
<td>Hydrological Measurements in Environmental Systems</td>
<td>96</td>
</tr>
<tr>
<td>WSEM-PCE73</td>
<td>Deep Learning in Hydrological Modeling</td>
<td>97</td>
</tr>
<tr>
<td>WSEM-SM879</td>
<td>Thermal Use of Groundwater</td>
<td>105</td>
</tr>
<tr>
<td>WSEM-SM961</td>
<td>Earthwork and Embankment Dams</td>
<td>106</td>
</tr>
<tr>
<td>WSEM-SM962</td>
<td>Environmental Geotechnics</td>
<td>107</td>
</tr>
<tr>
<td>WSEM-SM971</td>
<td>General Meteorology</td>
<td>109</td>
</tr>
<tr>
<td>WSEM-SM974</td>
<td>Applied Meteorology: Turbulent Diffusion</td>
<td>110</td>
</tr>
<tr>
<td>WSEM-SP111</td>
<td>Study Project</td>
<td>111</td>
</tr>
<tr>
<td>WSEM-PC732</td>
<td>Supplementary Studies on Culture and Society</td>
<td>112</td>
</tr>
<tr>
<td>M-BGU-104995</td>
<td>Module Master's Thesis</td>
<td>104</td>
</tr>
<tr>
<td>WSEM-PC986</td>
<td>Sustainable Management of rivers and Floodplains</td>
<td>103</td>
</tr>
<tr>
<td>WSEM-PC112</td>
<td>Booklet Integrated Infrastructure Planning</td>
<td>115</td>
</tr>
<tr>
<td>WSEM-PC111</td>
<td>Brownfield Sites - Investigation, Evaluation, Rehabilitation</td>
<td>124</td>
</tr>
<tr>
<td>WSEM-PC112</td>
<td>Deep Learning in Hydrological Modeling</td>
<td>125</td>
</tr>
<tr>
<td>WSEM-PC115</td>
<td>Design Exercise Hydraulic Structures</td>
<td>126</td>
</tr>
<tr>
<td>WSEM-PC117</td>
<td>Design Exercise River Engineering</td>
<td>127</td>
</tr>
<tr>
<td>WSEM-PC561</td>
<td>Earthwork and Embankment Dams</td>
<td>128</td>
</tr>
<tr>
<td>M-ZAK-112349</td>
<td>Elective Module Subject, Body, Individual: the Other Side of Sustainability</td>
<td>118</td>
</tr>
<tr>
<td>T-BGU-106612</td>
<td>Advanced Fluid Mechanics</td>
<td>118</td>
</tr>
<tr>
<td>T-BGU-106656</td>
<td>Applied Ecology and Water Quality</td>
<td>119</td>
</tr>
<tr>
<td>Z-AK-112653</td>
<td>Basics Module - Self Assignment BAK</td>
<td>120</td>
</tr>
<tr>
<td>T-ZAK-112345</td>
<td>Basics Module - Self Assignment BeNe</td>
<td>121</td>
</tr>
<tr>
<td>T-CIWVT-106841</td>
<td>Biofilm Systems</td>
<td>122</td>
</tr>
<tr>
<td>T-BGU-106763</td>
<td>Booklet Integrated Infrastructure Planning</td>
<td>123</td>
</tr>
<tr>
<td>T-BGU-10689</td>
<td>Brownfield Sites - Investigation, Evaluation, Rehabilitation</td>
<td>124</td>
</tr>
<tr>
<td>T-BGU-112171</td>
<td>Deep Learning in Hydrological Modeling</td>
<td>125</td>
</tr>
<tr>
<td>T-BGU-111929</td>
<td>Design Exercise Hydraulic Structures</td>
<td>126</td>
</tr>
<tr>
<td>T-BGU-111928</td>
<td>Design Exercise River Engineering</td>
<td>127</td>
</tr>
<tr>
<td>T-BGU-106792</td>
<td>Earthwork and Embankment Dams</td>
<td>128</td>
</tr>
<tr>
<td>T-ZAK-112349</td>
<td>Elective Module - Self Assignment BeNe</td>
<td>129</td>
</tr>
<tr>
<td>T-ZAK-112348</td>
<td>Elective Module - Sustainability Assessment of Technology</td>
<td>130</td>
</tr>
<tr>
<td>T-ZAK-112350</td>
<td>Elective Module - Sustainability in Culture, Economy and Society</td>
<td>131</td>
</tr>
<tr>
<td>T-ZAK-112347</td>
<td>Elective Module - Sustainable Cities and Neighbourhoods - Self Assignment BeNe</td>
<td>132</td>
</tr>
<tr>
<td>T-CIWVT-106835</td>
<td>Environmental Biotechnology</td>
<td>133</td>
</tr>
<tr>
<td>T-BGU-106635</td>
<td>Environmental Communication</td>
<td>134</td>
</tr>
<tr>
<td>T-BGU-106767</td>
<td>Environmental Fluid Mechanics</td>
<td>135</td>
</tr>
<tr>
<td>T-PHY-109981</td>
<td>Examination on Turbulent Diffusion</td>
<td>136</td>
</tr>
<tr>
<td>T-BGU-106620</td>
<td>Examination Prerequisite Environmental Communication</td>
<td>137</td>
</tr>
<tr>
<td>T-CIWVT-113235</td>
<td>Excercises: Membrane Technologies</td>
<td>138</td>
</tr>
<tr>
<td>T-CIWVT-110866</td>
<td>Excursions: Water Supply</td>
<td>139</td>
</tr>
<tr>
<td>T-BGU-112374</td>
<td>Experimental Hydraulics</td>
<td>140</td>
</tr>
<tr>
<td>T-BGU-106760</td>
<td>Experiments in Fluid Mechanics</td>
<td>141</td>
</tr>
<tr>
<td>T-BGU-106957</td>
<td>Field Training Water Quality</td>
<td>142</td>
</tr>
<tr>
<td>T-BGU-110413</td>
<td>Field Trip Karst Hydrogeology</td>
<td>143</td>
</tr>
<tr>
<td>T-BGU-110411</td>
<td>Flow Measurement Techniques</td>
<td>144</td>
</tr>
<tr>
<td>T-BGU-110841</td>
<td>Fluid Mechanics of Turbulent Flows</td>
<td>145</td>
</tr>
<tr>
<td>T-BGU-109953</td>
<td>Fundamental Numerical Algorithms for Engineers</td>
<td>146</td>
</tr>
<tr>
<td>T-BGU-108329</td>
<td>Fundamentals of Environmental Geodesy Part B</td>
<td>147</td>
</tr>
<tr>
<td>Table Of Contents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.31. Fundamentals of Water Quality - T-CIWVT-106838 ... 148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.32. General Meteorology - T-PHYS-101091 ... 149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.33. Geo Data Infrastructures and Web Services - T-BGU-101756 ... 150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.34. Geodata Infrastructures and Web-Services, Prerequisite - T-BGU-101757 .. 151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.35. Geostatistics - T-BGU-106605 .. 152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.36. Groundwater Flow around Structures - T-BGU-106774 ... 153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.37. Groundwater Hydraulics - T-BGU-100624 ... 154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.38. Homework 'Introduction to Environmental Data Analysis and Statistical Learning' - T-BGU-109950 ... 155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.39. Hydraulic Engineering - T-BGU-106759 .. 156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.40. Hydro Power Engineering - T-BGU-100139 .. 157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.41. Hydrogeology - T-BGU-106801 ... 158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.42. Hydrological Measurements in Environmental Systems - T-BGU-106599 .. 159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.43. In-depth Module - Doing Culture - Self Assignment BAK - T-ZAK-112655 ... 160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.44. In-depth Module - Global Cultures - Self Assignment BAK - T-ZAK-112658 161</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.45. In-depth Module - Media & Aesthetics - Self Assignment BAK - T-ZAK-112656 162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.46. In-depth Module - Spheres of Life - Self Assignment BAK - T-ZAK-112657 .. 163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.47. In-depth Module - Technology & Responsibility - Self Assignment BAK - T-ZAK-112654 164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.48. Industrial Wastewater Treatment - T-CIWVT-111861 .. 165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.49. Instrumental Analytics - T-CIWVT-106837 ... 166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.50. Integrated Design Project in Water Resources Management - T-BGU-111275 167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.51. Integrated Infrastructure Planning - T-BGU-106764 .. 168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.52. Interaction Flow - Hydraulic Structures - T-BGU-110404 ... 169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.53. Introduction to Environmental Data Analysis and Statistical Learning - T-BGU-109949 170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.54. Introduction to GIS for Students of Natural, Engineering and Geo Sciences - T-BGU-101681 171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.55. Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite - T-BGU-103541 ... 172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.56. Introduction to Matlab - T-BGU-106765 ... 173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.57. Introduction to Python - T-BGU-112598 ... 174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.58. Karst Hydrogeology - T-BGU-111592 ... 175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.59. Landfills - T-BGU-100084 .. 176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.60. Mass Fluxes in River Basins - T-BGU-111061 .. 177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.61. Master's Thesis - T-BGU-110134 .. 178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.62. Membrane Technologies in Water Treatment - T-CIWVT-113236 ... 179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.63. Methods of Remote Sensing, Prerequisite - T-BGU-101759 .. 180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.64. Microbiology for Engineers - T-CIWVT-106834 ... 181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.65. Modeling of Turbulent Flows - RANS and LES - T-BGU-110842 .. 182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.66. Modeling of Water and Environmental Systems - T-BGU-106757 .. 183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.67. Modeling Wastewater Treatment Processes - T-BGU-112371 ... 184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.68. Numerical Flow Modeling in Hydraulic Engineering - T-BGU-106776 ... 185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.69. Numerical Fluid Mechanics - T-BGU-106758 ... 186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.70. Numerical Fluid Mechanics II - T-BGU-106768 ... 187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.71. Numerical Groundwater Modeling - T-BGU-100625 .. 188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.72. Numerical Mathematics for Students of Computer Science - T-MATH-102242 189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.73. Oral Exam - Supplementary Studies on Culture and Society - T-ZAK-112659 190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.74. Oral Exam - Supplementary Studies on Sustainable Development - T-ZAK-112351 191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.75. Organic Trace Analysis of Aqueous Samples - T-CIWVT-106836 .. 192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.76. Parallel Programming Techniques for Engineering - T-BGU-106769 ... 193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.77. Practical Course in Water Technology - T-CIWVT-106840 ... 194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.78. Practice Module - T-ZAK-112660 ... 195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.79. Prerequisite Protection and Use of Riverine Systems - T-BGU-106790 .. 196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.80. Presentation 'Urban Water Infrastructure and Management' - T-BGU-112369 197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.81. Probability and Statistics - T-MATH-106784 .. 198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.82. Project Report Water Distribution Systems - T-BGU-108485 ... 199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.84. Protection and Use of Riverine Systems - T-BGU-106791 ... 201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.85. Remote Sensing and Positioning - T-BGU-106843 ... 202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.86. River and Floodplain Ecology - T-BGU-102997 ... 203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.87. River Basin Modeling - T-BGU-106603 .. 204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.88. River Processes - T-BGU-111930 .. 205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.89. Seminar Paper 'Waterway Engineering' - T-ZAK-112346 ... 206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.90. Specialisation Module - Self Assignment BeNe - T-ZAK-112346 .. 207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.91. Stormwater Management - T-BGU-112370 .. 208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.92. Study Project - T-BGU-106839 .. 209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Title</td>
<td>Code</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>5.93. Thermal Use of Groundwater</td>
<td>T-BGU-106803</td>
<td>210</td>
</tr>
<tr>
<td>5.94. Transport and Transformation of Contaminants in Hydrological Systems</td>
<td>T-BGU-106598</td>
<td>211</td>
</tr>
<tr>
<td>5.95. Turbulent Diffusion</td>
<td>T-PHYS-111427</td>
<td>212</td>
</tr>
<tr>
<td>5.96. Urban Water Infrastructure and Management</td>
<td>T-BGU-106600</td>
<td>213</td>
</tr>
<tr>
<td>5.97. Wastewater Treatment Technologies</td>
<td>T-BGU-109948</td>
<td>214</td>
</tr>
<tr>
<td>Proposal Preparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.99. Water and Energy Cycles</td>
<td>T-BGU-106596</td>
<td>216</td>
</tr>
<tr>
<td>5.100. Water Distribution Systems</td>
<td>T-BGU-108486</td>
<td>217</td>
</tr>
<tr>
<td>5.101. Water Technology</td>
<td>T-CIWVT-106802</td>
<td>218</td>
</tr>
<tr>
<td>5.102. Waterway Engineering</td>
<td>T-BGU-106780</td>
<td>219</td>
</tr>
<tr>
<td>5.103. Wetlands</td>
<td>T-BGU-112845</td>
<td>220</td>
</tr>
<tr>
<td>5.104. Wildcard 1 Language Skills</td>
<td>T-BGU-106884</td>
<td>221</td>
</tr>
<tr>
<td>5.105. Wildcard 2 Language Skills</td>
<td>T-BGU-106885</td>
<td>222</td>
</tr>
</tbody>
</table>

6. Example Curricula

Water Science and Engineering (Master of Science (M.Sc.), ER/SPO 2016)
Module Handbook as of 19/03/2024
For informational use only. For legally binding information, please refer to the german version of this handbook.
1 Curriculum

This module handbook is the key document describing the structure and the contents of the master's degree program Water Science & Engineering, and thus provides helpful information and guidance for planning the studies. The degree program and its subjects and modules are described in detail, providing the necessary information for planning an interdisciplinary course of studies tailored to each student's personal interests and needs.

Within the Curriculum (Chapt. 1) the organization of the degree program and further formalities are specified in addition to the general examination regulations (ER/SPO). For example, the assignments of modules to the compulsory and compulsory elective subjects are listed. The current examination regulation (ER/SPO) and potential amendments of these regulations can be found on the web https://www.sle.kit.edu/english/vorstudium/master-water-science-engineering.php (in German).

Another key function of the module handbook is the compilation of module descriptions (Chapt. 4), which provides information on the requirements and recommendations for the modules. Details about the learning controls are described at the so-called 'Teilleistungen' (Chapt. 5). Links are also provided to the respective courses in the online course catalog which should be attended for taking the learning controls.

1.1 Objectives of the master degree program

The master's degree program Water Science & Engineering offers an interdisciplinary, research-oriented education at the interface of water-related engineering and natural sciences. Graduates are able to develop strategies and technical solutions for sustainable water resources management. This includes an efficient use of limited water resources, implementing increasing requirements for the protection of water bodies, handling of hydro-meteorological extreme events, and mitigating the impacts of global change on the water cycle and related material cycles. Graduates are qualified for a responsible position in planning offices and engineering companies, industrial enterprises, public authorities, international development cooperation, and research and development. They acquire qualifications that allow pursuing doctoral studies.

Graduates acquire broad and in-depth knowledge of water-related scientific and engineering fundamentals, extending their prior knowledge acquired during their bachelor degree program. The lectures and classes on ‘Advanced Fundamentals’ are complemented by lectures and classes on engineering and scientific methods as well as interdisciplinary competencies ('Cross Cutting Methods & Competencies'). Graduates are able to transform their theoretical knowledge into quantitative approaches for the balancing of systems and to solve them analytically and numerically. They can precisely describe relevant circumstances in the environment, and represent specialized solutions to both experts as well as laypersons in an understandable form. Through practical exercises in laboratories, in computer pools or field work, graduates acquire the ability to apply methods on their own in specific contexts. They have sound knowledge of the analysis of time- and space-related data, the design of experiments, and the assessment of uncertainties of measurement and model results. The methods and practices used can be reflected and adapted to changing conditions.

The specialization area is made up of the four profiles 'Water Technologies & Urban Water Cycle', 'Fluid Mechanics & Hydraulic Engineering', 'Environmental System Dynamics & Management', and 'Water Resources Engineering', which are oriented towards current job profiles. Within the 'Profile Studies', graduates acquire the competence to link the fundamental and advanced knowledge with engineering applications in their selected field. They are thus able to transfer their expertise into the development of innovative technologies and management concepts. Supplementary modules also offer the possibility to complement the specialization with skills from neighboring scientific and engineering disciplines.

The competence to work out structured solutions is further promoted by an interdisciplinary ‘Study Project’, in which the theoretical knowledge and skills are applied to deal with a specific problem.

Graduates in Water Science & Engineering have a broad knowledge and in-depth expertise in their subject, comprehensive methodological competences, and a sound understanding of complex interactions in environmental systems. They are able to apply a range of analytical, experimental, technical and planning methods to fulfill their tasks in solving water-related problems in consideration of social and economic criteria. They deal autonomously with the current state of research and are able to analyze complex problems and select adequate methods for target-oriented solutions. As teaching is predominantly in English and students collaborate in international teams, graduates are also able to communicate their research findings in an international framework.
1.2 Structure of the master degree program

The master degree program Water Science & Engineering comprises 120 credit points (CP) and is structured in the subjects:

- Advanced Fundamentals, AF (27 CP), compulsory subject
- Cross-Cutting Methods & Competencies, CC (12 CP), compulsory subject
- Profile Studies, P (36 CP), compulsory elective subject
 - PA Water Technologies & Urban Water Cycle
 - PB Fluid Mechanics & Hydraulic Engineering
 - PC Environmental System Dynamics & Management
 - PD Water Resources Engineering
- Study Project, SP (15 CP), compulsory subject
- as well as the preparation of the Master's Thesis to the extent of 30 CP (Figure 1).

Figure 1: Structure of the master degree program Water Science & Engineering.
1.2.1 Advanced Fundamentals (AF), compulsory subject

In this subject, ‘Advanced Fundamentals’ of water-related engineering and natural sciences are taught to the extent of 27 CP. The modules assigned to this subject are listed in Table 1. The module ‘Modeling of Water and Environmental Systems (AF101)’ is compulsory for all students. They further choose four out of seven subject-specific modules – according to their fields of interest and their selected specialization (cf. ‘Profile Studies’). It is advisable to include the basic modules for the chosen profile; which are:

- for Profile A: AF201 and AF301
- for Profile B: AF401, AF501 and AF601
- for Profile C: AF701 and AF801

Table 1: Modules AF – Advanced Fundamentals

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Course</th>
<th>LC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(WSEM-)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

compulsory module:

<table>
<thead>
<tr>
<th>AF101:</th>
<th>Modeling of Water and Environmental Systems</th>
<th>Modeling of Water and Environmental Systems (E)</th>
<th>L</th>
<th>2</th>
<th>ngA 3</th>
</tr>
</thead>
</table>

compulsory elective modules:

<table>
<thead>
<tr>
<th>AF201:</th>
<th>Fundamentals of Water Quality</th>
<th>Fundamentals of Water Quality (E)</th>
<th>L/E</th>
<th>2/1</th>
<th>wE 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF301:</td>
<td>Urban Water Infrastructure and Management</td>
<td>Urban Water Infrastructure and Management (E)</td>
<td>L/E</td>
<td>4</td>
<td>ngA 1</td>
</tr>
<tr>
<td>AF401:</td>
<td>Advanced Fluid Mechanics</td>
<td>Advanced Fluid Mechanics (E)</td>
<td>L/E</td>
<td>4</td>
<td>wE 6</td>
</tr>
<tr>
<td>AF501:</td>
<td>Numerical Fluid Mechanics</td>
<td>Numerical Fluid Mechanics (E)</td>
<td>L/E</td>
<td>4</td>
<td>wE 6</td>
</tr>
<tr>
<td>AF601:</td>
<td>Hydraulic Engineering</td>
<td>River Engineering (E)</td>
<td>L/E</td>
<td>2</td>
<td>ngA 1</td>
</tr>
<tr>
<td>AF701:</td>
<td>Water and Energy Cycles</td>
<td>Water and Energy Cycles in Hydrological Systems: Processes, Predictions and Management (E)</td>
<td>L/E</td>
<td>4</td>
<td>EoT 6</td>
</tr>
<tr>
<td>AF801:</td>
<td>Hydrogeology</td>
<td>General and Applied Hydrogeology (E)</td>
<td>L/E</td>
<td>3</td>
<td>wE 6</td>
</tr>
</tbody>
</table>

explanations to Table 1:

general:

<table>
<thead>
<tr>
<th>LC</th>
<th>learning control</th>
<th>CP</th>
<th>credit point</th>
</tr>
</thead>
<tbody>
<tr>
<td>HpW / SWS</td>
<td>hours per week</td>
<td>W / S</td>
<td>winter term / summer term</td>
</tr>
<tr>
<td>G / E</td>
<td>language German / English</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

type of course:

<table>
<thead>
<tr>
<th>Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>lecture</td>
</tr>
<tr>
<td>L/E</td>
<td>lecture and exercise, separate or integrated</td>
</tr>
</tbody>
</table>

type of learning control:

<table>
<thead>
<tr>
<th>Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>wE</td>
<td>written examination</td>
</tr>
<tr>
<td>EoT</td>
<td>examination of other type</td>
</tr>
<tr>
<td>ngA</td>
<td>not graded accomplishment</td>
</tr>
<tr>
<td>ngA 1</td>
<td>not graded accomplishment as examination prerequisite</td>
</tr>
</tbody>
</table>

Water Science and Engineering (Master of Science (M.Sc.), ER/SPO 2016)
Module Handbook as of 19/03/2024
1.2.2 Cross-Cutting Methods & Competencies (CC), compulsory subject

The scientific education is complemented by a comprehensive education in interdisciplinary methods and technical skills. Students select modules of at least 12 CP in total from the options in Table 2. In line with the international orientation of the program, language courses of up to 6 CP can be taken in the module ‘Language Skills’.

Table 2: Modules CC - Cross-Cutting Methods & Competencies (CC)

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>LP</th>
<th>Course</th>
<th>Type</th>
<th>HpW / SWS</th>
<th>Type</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(WSEM-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC471:</td>
<td>Experiments in Fluid Mechanics</td>
<td>6</td>
<td>Experiments in Fluid Mechanics (E)</td>
<td>L/E</td>
<td>4</td>
<td>EoT</td>
<td>6</td>
</tr>
<tr>
<td>CC773:</td>
<td>Analysis of Spatial Data</td>
<td>6</td>
<td>Geostatistics (E)</td>
<td>L/E</td>
<td>4</td>
<td>oE</td>
<td>6</td>
</tr>
<tr>
<td>CC774:</td>
<td>Introduction to Environmental Data Analysis and Statistical Learning</td>
<td>6</td>
<td>Introduction to Environmental Data Analysis and Statistical Learning (E)</td>
<td>L/E</td>
<td>4</td>
<td>ngA 3)</td>
<td>2</td>
</tr>
<tr>
<td>CC371:</td>
<td>Freshwater Ecology</td>
<td>6</td>
<td>Applied Ecology and Water Quality (E)</td>
<td>L/S</td>
<td>3</td>
<td>EoT</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Field Training Water Quality (E)</td>
<td>E</td>
<td>1</td>
<td>EoT</td>
<td>3</td>
</tr>
<tr>
<td>CC921:</td>
<td>Instrumental Analysis</td>
<td>6</td>
<td>Instrumental Analysis (E)</td>
<td>L</td>
<td>2</td>
<td>oE</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Organic Trace Analysis of Aqueous Samples (E)</td>
<td>P</td>
<td>2</td>
<td>ngA 3)</td>
<td>2</td>
</tr>
<tr>
<td>CC791:</td>
<td>Integrated Infrastructure Planning</td>
<td>6</td>
<td>Infrastructure Planning – Socio-economic & Ecological Aspects (E)</td>
<td>L/E</td>
<td>4</td>
<td>ngA 3)</td>
<td>0</td>
</tr>
<tr>
<td>CC792:</td>
<td>Environmental Communication</td>
<td>6</td>
<td>Environmental Communication 2) (G)</td>
<td>S</td>
<td>2</td>
<td>2</td>
<td>ngA 3)</td>
</tr>
<tr>
<td>CC772:</td>
<td>Introduction to Matlab</td>
<td>3</td>
<td>Introduction to Matlab (E)</td>
<td>L/E</td>
<td>2</td>
<td>ngA 3)</td>
<td>3</td>
</tr>
<tr>
<td>CC571:</td>
<td>Fundamental Numerical Algorithms for Engineers</td>
<td>3</td>
<td>Fundamental Numerical Algorithms for Engineers (E)</td>
<td>L</td>
<td>2</td>
<td>wE</td>
<td>3</td>
</tr>
<tr>
<td>CC911:</td>
<td>Probability and Statistics</td>
<td>4</td>
<td>Probability and Statistics (E)</td>
<td>L/E</td>
<td>2/1</td>
<td>oE</td>
<td>4</td>
</tr>
<tr>
<td>CC931:</td>
<td>Remote Sensing and Positioning</td>
<td>6</td>
<td>Fundamentals of Environmental Geodesy Part B (E)</td>
<td>L/E</td>
<td>1/1</td>
<td>ngA 3)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Methods of Remote Sensing (E)</td>
<td>L/E</td>
<td>1/1</td>
<td>ngA 3)</td>
<td>3</td>
</tr>
<tr>
<td>CC933:</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>6</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences (G)</td>
<td>L/E</td>
<td>4</td>
<td>ngA 3)</td>
<td>3</td>
</tr>
<tr>
<td>CC935:</td>
<td>Geodata Infrastructures and Web-Services</td>
<td>6</td>
<td>Geodata Infrastructures and Web-Services (G)</td>
<td>L/E</td>
<td>3</td>
<td>ngA 3)</td>
<td>3</td>
</tr>
<tr>
<td>CC936:</td>
<td>Introduction to Python</td>
<td>3</td>
<td>Introduction to Python (E)</td>
<td>L/E</td>
<td>2</td>
<td>ngA 3)</td>
<td>3</td>
</tr>
<tr>
<td>CC912:</td>
<td>Numerical Mathematics for Students of Computer Science and Engineering</td>
<td>6</td>
<td>Numerical Mathematics for Students of Computer Science and Engineering (G)</td>
<td>L/E</td>
<td>3</td>
<td>wE</td>
<td>6</td>
</tr>
<tr>
<td>CC949:</td>
<td>Language Skills</td>
<td>2-6</td>
<td>Language Courses ()</td>
<td>S</td>
<td></td>
<td>ngA 2-6</td>
<td></td>
</tr>
</tbody>
</table>

explanations to Table 2:

in general:
- LC learning control
- CP credit point
- HpW / SWS hours per week, winter term / summer term
- W / S language German / English

1) Module will be offered newly as from summer term 2024.
2) Course is offered every semester.

<table>
<thead>
<tr>
<th>type of course:</th>
<th>type of learning control:</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>wE</td>
</tr>
<tr>
<td>L/E</td>
<td>oE</td>
</tr>
<tr>
<td>L/S</td>
<td>EoT</td>
</tr>
<tr>
<td>E</td>
<td>ngA</td>
</tr>
<tr>
<td>S</td>
<td>ngA 3)</td>
</tr>
<tr>
<td>P</td>
<td>not graded accomplishment</td>
</tr>
<tr>
<td></td>
<td>examination prerequisite</td>
</tr>
</tbody>
</table>

Water Science and Engineering (Master of Science (M.Sc.), ER/SPO 2016)
Module Handbook as of 19/03/2024
1.2.3 Profile Studies (P)

The degree program provides opportunity for specialization within three areas of expertise in the sectoral profiles A - C. In addition, an education of generalists in water engineering is possible in the cross-sectoral profile D. Within the profile, modules of 36 CP have to be completed, of which at least 24 CP need to be covered by modules specific to the chosen profile (Tables 3 - 5). In addition, further 'Supplementary Modules' can be chosen.

Students choose one of the four profiles at the beginning of their studies. The choice of a profile results from the online registration for the first profile-specific exam.

Profile A: Water Technologies & Urban Water Cycle (PA), compulsory elective subject

The focus of this profile is on innovative technologies for the treatment of drinking water and wastewater, as well as the sustainable design of urban and decentralized water systems. This includes biological, chemical and physical processes of water treatment, as well as planning and dimensioning of infrastructure and facilities for water supply and wastewater disposal. In addition to the basic and advanced technological principles and applications, energy efficiency and economics are important aspects.

Students in the profile 'Water Technologies & Urban Water' select modules of at least 24 CP in total from the options in Table 3, and additional 'Supplementary Modules' if desired.

Table 3: Modules PA - Water Technologies & Urban Water Cycle

<table>
<thead>
<tr>
<th>Code (WSEM-</th>
<th>Module Name</th>
<th>Code</th>
<th>Name (Language)</th>
<th>Type</th>
<th>HpW / SWS</th>
<th>Type CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA221:</td>
<td>Water Technology</td>
<td>6</td>
<td>Water Technology (E)</td>
<td>L/E</td>
<td>2/1</td>
<td>oE 6</td>
</tr>
<tr>
<td>PA222:</td>
<td>Membrane Technologies in Water Treatment</td>
<td>6</td>
<td>Membrane Technologies in Water Treatment (E)</td>
<td>L/F</td>
<td>2/1</td>
<td>ngA 1</td>
</tr>
<tr>
<td>PA982:</td>
<td>Applied Microbiology</td>
<td>8</td>
<td>Microbiology for Engineers (E)</td>
<td>L</td>
<td>2</td>
<td>oE 4</td>
</tr>
<tr>
<td>PA321:</td>
<td>Wastewater Treatment Technologies</td>
<td>6</td>
<td>Wastewater Treatment Technologies (E)</td>
<td>L/E</td>
<td>4</td>
<td>wE 6</td>
</tr>
<tr>
<td>PA322:</td>
<td>Stormwater Management</td>
<td>6</td>
<td>Stormwater Management (E)</td>
<td>L/E</td>
<td>4</td>
<td>EoT 6</td>
</tr>
<tr>
<td>PA323:</td>
<td>Modeling Wastewater Treatment Processes</td>
<td>6</td>
<td>Modeling Wastewater Treatment Processes (E)</td>
<td>L/E</td>
<td>4</td>
<td>EoT 6</td>
</tr>
<tr>
<td>PA621:</td>
<td>Water Distribution Systems</td>
<td>6</td>
<td>Water Distribution Systems (E)</td>
<td>L/E</td>
<td>4</td>
<td>ngA 1</td>
</tr>
<tr>
<td>PA224:</td>
<td>Biofilm Systems</td>
<td>4</td>
<td>Biofilm Systems (E)</td>
<td>L</td>
<td>2</td>
<td>oE 4</td>
</tr>
<tr>
<td>PA226:</td>
<td>Industrial Wastewater Treatment</td>
<td>4</td>
<td>Industrial Wastewater Treatment (E)</td>
<td>L</td>
<td>2</td>
<td>oE 4</td>
</tr>
</tbody>
</table>

explanations to Table 3:

in general:

<table>
<thead>
<tr>
<th>LC</th>
<th>CP</th>
<th>HpW / SWS</th>
<th>W / S</th>
<th>G / E</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC</td>
<td>learning control</td>
<td>CP</td>
<td>credit point</td>
<td>HpW / SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>type of course:</th>
<th>type of learning control:</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>lecture</td>
</tr>
<tr>
<td>L/E</td>
<td>lecture and exercise, separate or integrated</td>
</tr>
<tr>
<td>L/F</td>
<td>lecture and field trip, separate</td>
</tr>
<tr>
<td>P</td>
<td>practical course</td>
</tr>
<tr>
<td>ngA 1</td>
<td>not graded accomplishment as examination prerequisite</td>
</tr>
</tbody>
</table>
Profile B: Fluid Mechanics & Hydraulic Engineering (PB), compulsory elective subject

The aim of this profile is to deepen advanced hydrodynamic principles, and amplify their application for flows in the environment as well as for planning and dimensioning of hydraulic structures for water management. Emphasis is laid on the preservation and regeneration of the structural quality of water bodies, under consideration of ecological aspects. Profound knowledge in physical and numerical modeling is imparted.

Students in the profile 'Fluid Mechanics & Hydraulic Engineering' select modules of at least 24 CP in total from the options in Table 4, and additional 'Supplementary Modules' if desired.

Table 4: Modules PB - Fluid Mechanics & Hydraulic Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Course</th>
<th>Type</th>
<th>HpW / SWS</th>
<th>LC</th>
<th>Type</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(WSEM-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB421:</td>
<td>Environmental Fluid Mechanics</td>
<td>6 Environmental Fluid Mechanics (E)</td>
<td>L/E</td>
<td>4</td>
<td>wE</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PB524:</td>
<td>Modeling of Turbulent Flows - RANS and LES</td>
<td>6 Modeling of Turbulent Flows - RANS and LES (E)</td>
<td>L/E</td>
<td>4</td>
<td>oE</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PB522:</td>
<td>Advanced Computational Fluid Dynamics</td>
<td>6 Numerical Fluid Mechanics II (E)</td>
<td>L/E</td>
<td>2</td>
<td>oE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PB642:</td>
<td>Experimental Hydraulics and Measuring Techniques 1)</td>
<td>6 Flow Measurement Techniques (E)</td>
<td>L/E</td>
<td>2</td>
<td>oE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PB631:</td>
<td>Hydraulic Structures</td>
<td>6 Groundwater Flow around Structures (E)</td>
<td>L/E</td>
<td>2</td>
<td>wE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PB653:</td>
<td>Hydro Power Engineering</td>
<td>6 Hydro Power Engineering (G)</td>
<td>L/E</td>
<td>4</td>
<td>oE</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PB655:</td>
<td>Waterway Engineering</td>
<td>6 Waterway Engineering (G)</td>
<td>L/E</td>
<td>4</td>
<td>oE</td>
<td>4 ngA 3) 2</td>
<td></td>
</tr>
<tr>
<td>PB634:</td>
<td>River Processes 2)</td>
<td>6 Landscape and River Morphology (E)</td>
<td>L/E</td>
<td>2</td>
<td>EoT</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PB661:</td>
<td>Project Studies in Water Resources Management</td>
<td>6 Project Studies in Water Resources Management (G)</td>
<td>L/E</td>
<td>4</td>
<td>EoT</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

explanations to Table 4:

in general:

- **LC**: learning control
- **CP**: credit point
- **HpW / SWS**: hours per week
- **W / S**: winter term / summer term
- **G / E**: language German / English

- Module must not be selected together with module WSEM-PB641 not offered anymore
- Module must not be selected together with module WSEM-PB633 not offered anymore

- **Type of course**:
 - Lecture and exercise, integrated
 - Lecture, not integrated

- **Type of learning control**:
 - Written examination
 - Oral examination
 - Examination of other type
 - Not graded accomplishment as examination prerequisite
Profile C: Environmental System Dynamics & Management (PC), compulsory elective subject

This profile focuses on the processes of the water cycle in terrestrial systems and related matter and energy cycles. It also includes all aspects of integrated management of river basins, such as management strategies for the protection of surface and ground waters, the prediction of water-related extreme events, and the development of prevention and mitigation measures.

Students in the profile 'Environmental System Dynamics & Management' select modules of at least 24 CP in total from the options in Table 5, and additional ‘Supplementary Modules’ if desired.

Table 5: Modules PC - Environmental System Dynamics & Management

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Course</th>
<th>Type</th>
<th>HpW / SWS</th>
<th>LC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Learning Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(WSEM-)</td>
<td>Integrated Design Project in Water Resources Management</td>
<td>Integrated Design Project in Water Resources Management (E)</td>
<td>V/Ü</td>
<td>4 PaA</td>
<td>6</td>
</tr>
<tr>
<td>PC725:</td>
<td>Subsurface Flow and Contaminant Transport</td>
<td>Transport and Transformation of Contaminants in Hydrological Systems (E)</td>
<td>L/E</td>
<td>4 oE</td>
<td>6</td>
</tr>
<tr>
<td>PC732:</td>
<td>Hydrological Measurements in Environmental Systems</td>
<td>Hydrological Measurements in Environmental Systems (E)</td>
<td>PE</td>
<td>4 EoT</td>
<td>6</td>
</tr>
<tr>
<td>PC733:</td>
<td>Deep Learning in Hydrological Modeling</td>
<td>Deep Learning in Hydrological Modeling (E)</td>
<td>L/E</td>
<td>4 EoT</td>
<td>6</td>
</tr>
<tr>
<td>PC762:</td>
<td>Protection and Use of Riverine Systems</td>
<td>Protection and Use of Riverine Systems (E)</td>
<td>L/S</td>
<td>4 ngA</td>
<td>1 5</td>
</tr>
<tr>
<td>PC821:</td>
<td>Hydrogeology: Field and Laboratory Methods 1)</td>
<td>Preparatory Seminar (G) Field and Laboratory Exercises (G)</td>
<td>S</td>
<td>1 EoT</td>
<td>6</td>
</tr>
<tr>
<td>PC842:</td>
<td>Karst Hydrogeology 3)</td>
<td>Karst Hydrogeology (G) Field Trip Karst Hydrogeology (G)</td>
<td>L/E</td>
<td>2 wE</td>
<td>4</td>
</tr>
<tr>
<td>PC986:</td>
<td>Management of River and Wetland Ecosystems 3)</td>
<td>Ecology of Rivers and Wetlands (G) Wetlands (G)</td>
<td>L</td>
<td>2 ngA</td>
<td>3</td>
</tr>
</tbody>
</table>

explanations to Table 5:

- **in general:**
 - **LC**: learning control
 - **CP**: credit point
 - **Hpw / SWS**: hours per week
 - **W / S G / E**: winter term / summer term language German / English
 - **1) Module will not be offered anymore as from summer term 2024.**
 - **2) Beginning the module in summer term (S) is recommended.**
 - **3) Beginning the module in winter term (W) is recommended.**

- **type of course:**
 - **L**: lecture
 - **L/E**: lecture and exercise, integrated
 - **L/S**: lecture and seminar, integrated
 - **E**: exercise
 - **PE**: practical exercise
 - **S**: seminar
 - **Pj**: project

- **type of learning control:**
 - **wE**: written examination
 - **oE**: oral examination
 - **EoT**: examination of other type
 - **ngA**: not graded accomplishment
 - **ngA**: as examination prerequisite

Profile D: Water Resources Engineering (PD), compulsory elective subject

This profile aims at training generalists as the individual specialization. Consequently, it features a diversification into the topics of the three profiles A to C.

Students in the profile 'Water Resources Engineering' select modules of at least 24 CP in total from the options in Tables 3 to 5, and additional ‘Supplementary Modules’ if desired. At least one module from each of the three profiles A to C has to be chosen.
Supplementary Modules (SM)

The individual specialization within the profile studies can be complemented by electives in order to individualize the profile studies. For that purpose, 'Supplementary Modules' can be selected in addition to the respective profile-specific modules (at least 24 CP), in order to get the 36 CP within the Profile Studies.

All subject-specific modules of the program for which an examination has not already been taken can be chosen as 'Supplementary Modules'. These could thus be further modules from the chosen profile, from other profiles, or from the subjects AF and CC (with the exception of the module 'Language Skills CC949'). Alternatively, modules from related disciplines at KIT can be chosen, such as Geocology, Meteorology, Civil Engineering (e.g. Geotechnical Engineering), Applied Geosciences (e.g. Engineering Geology), or Chemical and Process Engineering. Available 'Additional Supplementary Modules' from other disciplines are listed in Table 6.

The choice of 'Supplementary Modules' should be coordinated with the mentor. The mentor advises on suitable modules for the chosen orientation. Other modules from related disciplines compatible to the profile and not listed in Tables 1 to 6 in this handbook might come into consideration as 'Supplementary Modules'. This requires the compilation of an individual curriculum for the student, which needs to be approved by the mentor.

Table 6: Additional Supplementary Modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Course</th>
<th>Type</th>
<th>HpW / SWS</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Geology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM879: Thermal Use of Groundwater</td>
<td>4</td>
<td>Thermal Use of Groundwater (E)</td>
<td>L/E</td>
<td>2</td>
</tr>
<tr>
<td>Geotechnics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM961: Earthwork and Embankment Dams</td>
<td>6</td>
<td>Basics in Earthworks and Embankment Dams (G)</td>
<td>L/E</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Embankment Dams (Advanced) (G)</td>
<td></td>
<td>L/E</td>
<td>2</td>
</tr>
<tr>
<td>SM962: Environmental Geotechnics</td>
<td>6</td>
<td>Landfills (G)</td>
<td>L/E</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Brownfield Sites - Investigation, Evaluation, Rehabilitation (G)</td>
<td></td>
<td>L</td>
<td>2</td>
</tr>
<tr>
<td>Meteorology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM971: General Meteorology</td>
<td>6</td>
<td>General Meteorology (G)</td>
<td>L/E</td>
<td>3/2</td>
</tr>
<tr>
<td>SM974: Applied Meteorology: Turbulent Diffusion</td>
<td>6</td>
<td>Turbulent Diffusion (E)</td>
<td>L/E</td>
<td>2/1</td>
</tr>
</tbody>
</table>

explanations to Table 6:

LC	CP	HPW	SWS	W	S	G	E	1	learning control	credit point	hours per week	winter term / summer term	language German / English	type of course:	type of learning control:								
LC	CP	HPW	SWS	W	S	G	E	1	lecture control	credit point	hours per week	winter term / summer term	language German / English	L	L/E	L/E	L/E	lecture	lecture and exercise, separate or integrated	oral examination	not graded accomplishment	not graded accomplishment	as examination prerequisite

1 Beginning the module in winter term (W) is recommended.
1.2.4 Study Project, compulsory subject

Students carry out an interdisciplinary 'Study Project'. The project prepares students for independent scientific working and writing, and introduces skills in project management. The topics for the 'Study Project' should be especially located at the interfaces between the water-research disciplines of the KIT. In addition to the competence of combining approaches from different fields in the context of the project, they acquire abilities for teamwork and critical evaluation of results. 15 CP are credited for the 'Study Project'.

It is highly recommended to have acquired the necessary subject-specific and interdisciplinary competencies needed to work on the 'Study Project' beforehand.

The assignment of a research topic, supervision and evaluation of the 'Study Project' is carried out by a full-time faculty member of the KIT Department of Civil Engineering, Geo and Environmental Sciences or of the KIT Department of Chemical and Process Engineering, who is authorized to supervise a master's thesis. Students look for a supervisor from the field they are interested in. In exceptional cases and at request of the student, the spokesperson of the study program ensures that a topic is assigned within a four week period.

For registration the respective form (http://www.wasser.kit.edu/downloads/Pruef_ZulAnmeld_StudyProject_engl.pdf) with the admission by the Study Program Service of the department is handed over to the supervisor when starting the 'Study Project'.

1.2.5 Master's Thesis/Masterarbeit

The Master's Thesis is an independent scientific study and includes the theoretical and/or experimental work on a complex problem. Students deal with the current state of research and apply the expertise and scientific methods acquired during the studies. They can document, discuss and evaluate the obtained results. Furthermore, they are able to present and defend the essential findings. The topic of the ‘Master’s Thesis’ depends on the subject area that is chosen for the thesis. If the master's thesis is written outside of KIT, consider the instruction on 'Merkblatt - Externe Abschlussarbeiten' (http://www.haa.kit.edu/downloads/KIT_ALLGEMEIN_Merkblatt_ Externe_Abschlussarbeiten.pdf; in German).

Generally, the ‘Master’s Thesis’ is written during the 4th semester. In order to be admitted to the ‘Master’s Thesis’, students must have successfully completed modules of at least 42 CP in the master’s degree program Water Science & Engineering. The supervisor initiates the master's thesis to be uploaded to the campus management system. After notification via e-mail, the master's thesis has to be registered online in the portal Campus Management for Students. The admission follows after the required prerequisites and eventual further conditions are verified. As these steps have to be completed before starting the thesis (scheduled starting date), they should be initiated at least two weeks in advance. It is highly recommended to have acquired the necessary subject-specific and interdisciplinary competencies needed to work on the 'Master’s Thesis' beforehand.

Students look for a supervisor from the field they are interested in who assigns the research topic for the ‘Master’s Thesis’. This person has to be a member of the KIT Department of Civil Engineering, Geo and Environmental Sciences or of the KIT Department of Chemical and Process Engineering as professor or habilitated faculty member or he/she is authorized to supervise a master's thesis as entitled research associate. In other cases a permission of the Examination Committee Master Civil Engineering is required using the respective form (https://www.tmb.kit.edu/english/5583.php, in German). Generally, the supervisor and a second examiner evaluate the thesis. For the assignment of the research topic, the interests of the student can be taken into account. In exceptional cases, the assignment of a research topic for the 'Master's Thesis' is arranged by the chairperson of the Examination Committee Master Civil Engineering.

The preparation time is six months. The 'Master's Thesis' can be written in English or German. Within one month after submission it has to be completed with a presentation. The presentation is part of the examination and is considered within the evaluation.

Further information about the processes related to the master's thesis can be found in "Handreichen Masterarbeiten Bauingenieurwesen" (in German) on the website of the Study Program Service under the link "Abschlussarbeiten".

1.2.6 Interdisciplinary Qualifications

Generic qualifications are taught along with the modules, especially in the subjects 'Cross Cutting Methods & Competencies' and 'Study Project'.

1.2.7 Additional accomplishments

An additional accomplishment is a voluntarily taken examination, which is not considered in the overall grade (comp. ER/SPO § 15). In total, additional accomplishments can be taken to the extent of max. 30 CP from offers within KIT.

The examination in the desired additional accomplishment should be registered online by the student within the registration period. Additional accomplishments available in the module Further Examinations can be selected directly. As from summer term 2023 two selectable additional modules are available for the Accompanying Studies of ZAK. If selecting one of these modules it has to be considered that the extent of possible further additional accomplishments is reduced by the extent of the selected ZAK module even if this is not completed. Designated additional accomplishments not available in the module Further Examinations or additional modules must be conveyed to the Study Program Service of the department via e-mail. The desired selection will then be made available in the campus management system enabling the online exam registration within the registration period. The assignment can be changed later by sending a request to the Examination Committee Master Civil Engineering.

All additional accomplishments are listed in the transcript of records. Completed modules can be included in the master degree certificate as additional modules if requested by the student. This also applies to additional accomplishments recognized by the Examination Committee Master Civil Engineering.
1.3 Module selection, individual curriculum & mentoring

The compulsory and compulsory elective subjects are developed by the selection of modules within a specified framework. Each module consists of one or more interrelated courses and is completed by one or more examinations. The extent of a module is determined by credit points (CP) which are credited after passing the module successfully. In addition to the descriptions in the module handbook, the course catalog (online) and the postings and web pages of the institutes inform about the current details every semester (e.g. time and location of courses).

The selection options within the studies require that each student compiles an individual curriculum. The selection of the modules have to be made with care. This selection is supervised by a mentor chosen by the student at the beginning of the studies. The mentor has to be a professor of the KIT Department Civil Engineering, Geo and Environmental Sciences or of the KIT Department of Chemical and Process Engineering and has to be involved in the degree program Water Science & Engineering. Possible mentors are:

Prof. O. Eiff, Prof. M. Franca, Prof. N. Goldscheider, Prof. H. Horn, Prof. M. Uhlmann, Prof. E. Zehe, PD U. Ehret, PD S. Fuchs, PD U. Mohrok

If modules shall be selected within the compulsory and compulsory elective subjects others than listed in Tables 1 to 6 the individual curriculum need to be approved by the mentor and to be announced to the Study Advisor. Exemplary curricula can be found in the appendix.

1.4 Exams and Learning Controls

The successful completion of modules is checked by learning controls, which can be graded or not graded. Graded learning controls are written exams (wE), oral exams (oE), or examinations of other type (EoT). Not graded accomplishments (ngA) are course-related performances in written, oral or practical form.

1.4.1 Registration

The students must register for learning controls online in the portal Campus Management for Students. The examiners can define prerequisites and deadlines for the registration. Upon registration, students have to declare the assignment of the respective module to a subject, as far as options exist. In the case of an oral examination, the online registration has directly to be combined with the negotiation of an examination date with the examiner.

A successful online registration covers the admission to the examination. The portal Campus Management for Students provides the confirmation, which can serve as proof of registration in case of doubt. If problems occur with an online registration, the Study Program Service of the department as well as the examiner have to be informed as soon as possible to solve the problem in advance of examination date.

A registered examination either has to be taken or canceled in advance to the deadline of cancelation.

1.4.2 Cancellation

Students may cancel their registration for written exams (wE) without giving reasons until the examination questions are handed out.

When canceling oral examinations (oE), the examiner must be informed at least three working days prior to the examination date.

Canceling of examinations of other type (EoT) as well as of not graded accomplishments (ngA) is possible up to the rendering of the respective performance or the first part of the performance. The submission of a written work (report, homework or similar) or the beginning of an oral exam (presentation, colloquium or similar) counts as rendering the performance. If deadlines are set, a cancellation can only be made in advance.

In general, a cancellation shall be made nevertheless online in time.

A later cancellation or withdrawal must be justified by valid reasons, and requires submitting a written declaration to the Examination Committee Master Civil Engineering immediately.

1.4.3 Repetition

A failed examination (wE, oE, EoT) can be repeated once in the same form. If the retake of a written exam is failed again, an oral examination takes place, in which at best the grade Passed can be achieved. Failed exams have to be retaken by the end of the examination period of the semester after the following semester.

Not graded accomplishments (ngA) may be repeated several times.
1.5 Recognition of accomplishments

1.5.1 Recognition of already obtained credits

The recognition of already obtained accomplishments, for example credits obtained in other master’s programs or at other universities, have to be requested by the respective recognition form of the Examination Committee Master Civil Engineering (https://www.tmb.kit.edu/english/5583.php, in German). The respective lecturers confirm if the accomplishments are equivalent to their modules in the curriculum.

Accomplishments that are not equivalent to modules in the curriculum can be accredited if the acquired competences contribute to the qualification goals of the master’s program. If necessary, an individual curriculum has to be compiled and approved by the mentor. The Examination Committee Master Civil Engineering decides on which accomplishments are accredited and which parts of the curriculum may be replaced.

The form for recognition has to be submitted to the Study Advisor, who will transfer it to the Examination Committee Master Civil Engineering and the Study Program Service of the department.

For crediting passed prior master's examinations the form Transfer of prior master's examinations (in German) has to be filled and transferred to the Study Program Service of the department.

1.5.2 Accomplishments obtained outside of the Higher Education System

Accomplishments made outside of the higher education system, as for example vocational training, can be accredited if the acquired competences contribute to the qualification goals of the master’s program. At maximum, 50 % of the university education can be replaced. For this purpose, an informal request has to be sent to the Examination Committee Master Civil Engineering and a counseling interview has to be arranged. Then, the Examination Committee Master Civil Engineering verifies to which extent the acquired knowledge and capabilities can be recognized, and which parts of the program they can replace.

1.6 Calculation of grades, final grade

Grades are obtained for single examinations. If a module contains several examinations, or a subject contains several modules, the grade of the module or subject is obtained by calculation. If not specified otherwise, the grade of the module or subject is the average of all grades within the module or subject, respectively, weighted with the corresponding credit points. The calculated grades are cut off after the first decimal place. The credit points related to not graded accomplishments are not considered within such a calculation.

The final grade is calculated by weighting the grades of all subjects and the Master's Thesis according to their defined number of credit points, as specified in the examination regulations (ER/SPO § 20). If the grade of the master's thesis is 1.0 and the final grade is 1.2 or better, the degree is awarded 'with distinction'.

1.7 Semester abroad

The department recommends students to study for one to two semesters at a foreign university. KIT offers a variety of exchange programs. Within Europe, this is the well-known ERASMUS program. General information on planning a stay abroad is available on the website of the International Student Office (ISIO), https://www.intl.kit.edu/ostudies/index.php, and specific information is available on the website of the KIT-Department of Civil Engineering, Geo and Environmental Sciences, https://bgu.kit.edu/english/outgoing.php. It is compulsory to agree on the intended accomplishments with the personal mentor in advance, particularly with regard to the possibility of crediting in the personal curriculum. The proposed Learning Agreement has to be approved and signed by the Erasmus Coordinator.

1.8 Special circumstances

Students in special circumstances are students with disabilities, chronic diseases, or on maternity leave, with children or dependents in need of care. The regulations on compensation for disadvantages include preferential access to courses with limited attendance, taking examinations under individually designed conditions, or adjustments to deadlines. These are described in detail in the Satzung über nachteilsausgleichende Regelungen in den Bachelor- und Masterstudiengängen am Karlsruher Institut für Technologie (KIT) (in German; see SPO § 12 and 13 according to Satzung zur Änderung der Regelungen über den Nachteilsausgleich in den Studien- und Prüfungsordnungen, Artikel 68; in German).

For compensation for a disadvantage, the student should submit an informal application to the Examination Committee Master Civil Engineering and provide the appropriate proof. The Examination Committee Master Civil Engineering decides on the application as well as on the kind and extent of the individually necessary measures and informs the student.
2 Contact persons

Dean of Study Affairs:
Prof. Dr.-Ing. Steffen Freitag
Institute for Structural Analysis, Bldg. 10.50, 2nd floor
consultation: on appointment
Phone: 0721/608-42280
Email: steffen.freitag@kit.edu

Study Advisor/Coordination:
Dr.-Ing. Michele Trevisson
Institute for Water and Environment
consultation: on appointment
Email: michele.trevisson@kit.edu

Examination Committee Master Civil Engineering:
Prof. Dr.-Ing. Kunibert Lennerts (chairperson)
Dr.-Ing. Heike Schmidt-Bäumler (person in charge)
Institute of Technology and Management in Construction, Bldg. 50.31, R. 005 (ground floor)
consultation: on appointment
Phone: 0721/608-46008
Email: pam@bgu.kit.edu
Web: https://www.tmb.kit.edu/english/PAM.php

Study abroad:
Prof. Dr. Olivier Eiff (Erasmus Coordinator)
Mrs. Angelika Fels (person in charge)
Institute for Water and Environment, Bldg. 10.81, R. 128 (1st floor)
consultation: on appointment
Phone: 0721/608-47245
Email: erasmus-civil@bgu.kit.edu
Web: https://www.bgu.kit.edu/english/outgoing_erasmus.php

Study Program Service ('Studiengangservice Bau-Geo-Umwelt'):
KIT Department of Civil Engineering, Geo and Environmental Sciences, Bldg. 10.81, R. 312
Email: studiengangservice@bgu.kit.edu
Web: https://www.bgu.kit.edu/english/studiengangservice.php

Fachschaft:
Students in Civil Engineering
Bldg. 10.81 (Altes Bauing. Geb.), R. 317.1 (3rd floor)
consultation: s. https://www.fs-bau.kit.edu
Phone: 0721/608-43895
Email: info@fs-bau.kit.edu
Web: https://www.fs-bau.kit.edu
3 Current changes

Major changes will be listed here as from summer term 2024. Despite the fact that this process is mapped with great care, other/ minor changes may occur.

modules not offered anymore as from summer term 2024:
 Hydrogeology: Field and Laboratory Methods [WSEM-PC821]

modules offered newly as from summer term 2024:

changes of the courses assigned to the modules as from summer term 2024:
 Hydrogeology [WSEM-AF801]:
 Only the course General and Applied Hydrogeology (6310416), 3 HpW/SWS, will be offered in summer term. The course Field Methods in Hydrogeology (6310415), 1 HpW/SWS, in winter term is canceled.

changed examinations and not graded accomplishments as from summer term 2024:
 Hydraulic Structures [WSEM-PB631]:
 The partial examination "Groundwater Flow around Structures", 3 LP, is a written examination.
4 Modules

4.1 Module: Modeling of Water and Environmental Systems (WSEM-AF101) [M-BGU-103374]

Responsible: Dr. Jan Wienhöfer
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: Advanced Fundamentals (Version 2) (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-106757 | Modeling of Water and Environmental Systems | 3 CR | Wienhöfer |

Competence Certificate
- 'Teilleistung' T-BGU-106757 with not graded accomplishment according to § 4 Par. 3
- details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students can explain approaches to model environmental systems in different water-related disciplines. Based on this, they are able to explain common approaches and methods of environmental system modeling, and to name and evaluate the respective advantages, disadvantages, ranges of applicability and inherent limitations. Students can explain universal challenges of modeling and are able to select adequate model concepts for given water-related tasks.

Content
This lecture series comprises individual lectures on environmental systems modeling from a broad range of water-related disciplines (e.g. flood forecasting, contaminant transport, fluid-particle interaction, water quality, or hydraulic design). The commonalities and differences of the modeling approaches are discussed with respect to their conceptual approach, mathematical formulation and numerical scheme. Spatial and temporal scales as well as discretization of the various models are compared and discussed. Based on this broad range of examples, universal challenges of modeling are illustrated: Intrinsic uncertainties, adequate selection of numerical schemes, calibration and validation, adequate model choice.

Module grade calculation
not graded

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture: 30 h
independent study:
- preparation and follow-up lectures: 30 h
- working on take home examination: 30 h
total: 90 h

Recommendation
none
4.2 Module: Fundamentals of Water Quality (WSEM-AF201) [M-CIWVT-103438]

Responsible: Dr. Gudrun Abbt-Braun
Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Advanced Fundamentals (Version 2) (Compulsory Elective Modules)
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Supplementary Modules)

Credits 6
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language English
Level 4
Version 1

Mandatory
T-CIWVT-106838 Fundamentals of Water Quality 6 CR Abbt-Braun

Competence Certificate
- 'Teilleistung' T-CIWVT-106838 with written examination according SPO/ER § 4 Par. 2 No. 1
details about learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students can explain the relationships behind the occurrence of geogenic and anthropogenic compounds in the hydrological cycle. They are able to select adequate methods for the analysis of water constituents and microorganisms in water samples. They are familiar with the associated calculations, and they can compare and interpret the obtained data. They know how to apply different methods, how to analyze relationships and how to critically assess water quality analyses.

Content
Various types of water, legislations, analytical definitions, analytical quality, sampling methods, quick test methods, field investigations, organoleptic determinations, general investigations, optical characterization (turbidity, color, UV, Lambert-Beer’s law, photometry), titrations, acid-base-systems, buffering, main inorganic compounds (anions, cations, occurrence, ion chromatography, titration, complexometry, flame photometry, atomic spectroscopy), heavy metals and metalloids (occurrence and main methods for determination), organic compounds and organic micropollutants (occurrence, thin layer chromatography, high performance liquid chromatography, infrared spectroscopy, gas chromatography), water-specific sum parameters (DOC, AOX, COD, BOD), radioactivity, microbiology.

Module grade calculation
grade of the module is grade of the exam

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 45 h
independent study:
- preparation and follow-up lectures, exercises: 65 h
- examination preparation: 70 h
total: 180 h

Recommendation
none

Literature

Lecture notes in ILIAS
4.3 Module: Urban Water Infrastructure and Management (WSEM-AF301) [M-BGU-103358]

Responsible: PD Dr.-Ing. Stephan Fuchs
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of:
- Advanced Fundamentals (Version 2) (Compulsory Elective Modules)
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

T-BGU-112369 Presentation 'Urban Water Infrastructure and Management' 2 CR Azari Najaf Abad, Fuchs
T-BGU-106600 Urban Water Infrastructure and Management 4 CR Azari Najaf Abad, Fuchs

Competence Certificate
- 'Teilleistung' T-BGU-112369 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-106600 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
Students analyze and evaluate basic methods of urban water management. They recognize the interactions between natural and technical systems. They acquire knowledge necessary to identify process engineering solutions and to implement them into functional systems (infrastructure elements). Students are able to describe urban water management issues in the context of watersheds and to take appropriate and environmentally-sound decisions in terms of energy efficiency and costs.

Content
This module provides a deep understanding of basic principles needed for the design, analysis and evaluation of urban water systems. The concept of system analysis is introduced to develop models that consider the most important biological, chemical and physical processes and are used to solve water management problems. Based on a detailed consideration of individual elements (subsystems), an overall picture of the water management system Urban Settlement and its interaction with surface and groundwater bodies can be gained. For this purpose, theoretical tools are developed and modeling approaches are reviewed. Students consider the factors energy and costs in the analysis and assessment of water management systems.

Module grade calculation
grade of the module is grade of the exam

Annotation
keine

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture/exercise: 60 h

independent study:
- preparation and follow-up lecture/exercises: 30 h
- preparation Presentation 'Urban Water Infrastructure and Management' (examination prerequisite): 60 Std.
- examination preparation: 30 h

total: 180 h

Recommendation
basic knowledge in sanitary engineering
Literature
4.4 Module: Advanced Fluid Mechanics (WSEM-AF401) [M-BGU-103359]

Responsible: Prof. Dr. Olivier Eiff
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: Advanced Fundamentals (Version 2) (Compulsory Elective Modules)
Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
Profile Studies / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-106612 | Advanced Fluid Mechanics | 6 CR | Eiff |

Competence Certificate

- 'Teilleistung' T-BGU-106612 with written examination according to § 4 Par. 2 No. 1
details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

Students acquire a firm understanding of the fundamental mechanics of fluids with emphasis towards environmental flows on the basis of the local conservation laws. They are able to differentiate and apply the different set of assumptions and methods in order to better understand the different flow classes and solutions. They are capable of solving basic flow problems after forming the relevant assumptions. Participants are able to use the knowledge and competence gained for more detailed and applied studies of environmental flows.

Content

This module covers the fundamental mechanics of fluids forming the foundation of environmental fluid mechanics. The approach is based on the basic local conservation laws. Emphasis is on the phenomena and the possible analytical solutions associated with the various flow classes. Topics covered include the general and special forms of the governing equations, flow kinematics, viscous incompressible flows, ideal-fluid flows, shallow flows, and buoyancy effects in fluids. Waves and turbulence are also addressed as well as different methods of analysis such as scaling.

Module grade calculation

grade of the module is grade of the exam

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises: 30 h
- home work on exercises: 30 h
- examination preparation: 60 h

total: 180 h

Recommendation

first courses in undergraduate fluid-mechanics, advanced engineering mathematics (analysis, differential and integral calculus, ordinary and partial differential equations, linear algebra, Fourier analysis, complex numbers)

Literature

4.5 Module: Numerical Fluid Mechanics (WSEM-AF501) [M-BGU-103375]

Responsible: Prof. Dr.-Ing. Markus Uhlmann
Organization: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Advanced Fundamentals (Version 2) (Compulsory Elective Modules)
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Supplementary Modules)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory
T-BGU-106758 Numerical Fluid Mechanics 6 CR Uhlmann

Competence Certificate
- 'Teilleistung' T-BGU-106758 with written examination according to § 4 Par. 2 No. 1
 details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students are enabled to describe the fundamental approaches of numerical solution of flow problems. They are capable of evaluating the advantages and disadvantages of these approaches in the various areas of application, enabling them to make an appropriate choice. Participants are able to apply the numerical methods to simple flow problems; this involves the generation and application of basic computer programs. They are able to analyze the results with respect to precision, stability and efficiency.

Content
This module constitutes a general introduction to the numerical solution of flow-related problems. The mathematical properties of the conservation equations are analyzed. The principles of numerical discretization are studied with the aid of the finite-difference and the finite-volume method. The concept of numerical stability is introduced, and various techniques of error analysis are presented theoretically and by way of examples.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h

independent study:
- preparation and follow-up lectures, exercises: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation
- Fluid Mechanics (knowledge of the fundamental processes of advection and diffusion, familiarity with the Navier-Stokes equations)
- Mathematics (analysis - partial differential equations, Fourier analysis, series expansions, complex numbers; linear algebra - matrices, determinants, eigensystems; numerics - discrete number representation, round-off, floating point operations, numerical treatment of partial differential equations)
- Knowledge in programming with Matlab is recommended; otherwise it is strongly recommended to participate in the course 'Introduction to Matlab (CC772)'
4.6 Module: Hydraulic Engineering (WSEM-AF601) [M-BGU-103376]

Responsible: Prof. Dr. Mario Jorge Rodrigues Pereira da Franca

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Advanced Fundamentals (Version 2) (Compulsory Elective Modules)
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

- **T-BGU-111928** Design Exercise River Engineering
 - 1 CR Rodrigues Pereira da Franca

- **T-BGU-111929** Design Exercise Hydraulic Structures
 - 1 CR Rodrigues Pereira da Franca

- **T-BGU-106759** Hydraulic Engineering
 - 4 CR Rodrigues Pereira da Franca

Competence Certificate

- 'Teilleistung' T-BGU-111928 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-111929 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-106759 with written examination according to § 4 Par. 2 No. 1

Details about the learning controls see at the respective 'Teilleistung'

Prerequisites

none

Competence Goal

Students will be able to describe and analyse basic processes linked to the hydraulics of rivers and hydraulic structures. They are able to carry the design of engineering works in rivers and the dimensioning of hydraulic structures with suitable approaches.

Based on the acquired process knowledge, they are able to analyse the results of the design in a critical manner.

Students are able to use and link their knowledge logically. They can work in a reflexive and self-critical manner.

Content

The module provides students with theoretical and practical knowledge of hydraulics applied to problem solving in the context of river engineering and for the design of hydraulic structures.

The course *River Engineering* contains the following topics:

- overview of catchment and river network basic processes and in the context of human usage and safety considering at the same time preservation of natural processes;
- sediment management;
- calculation and design of river engineering works such channels, riverbank protection, levees, groynes, detention basins; river restoration works.

In the course *Design of Hydraulics Structures* a focus will be set on hydraulic structures and their application in managing water resources. We will analyze the design procedure taking engineering standards and state of the art into account.

The content of the module/course pursue the following UN Sustainable Goals:

- SDG 6 Clean Water and Sanitation
- SDG 7 Affordable and Clean Energy

Module grade calculation

grade of the module is grade of the exam

Annotation

Further information on the course/module can be found at: https://wb.iwu.kit.edu/education.php.
Workload

contact hours (1 HpW = 1 h x 15 weeks):

- River Engineering lecture/exercise: 30 h
- Design of Hydraulic Structures lecture/exercise: 30 h

independent study:

- preparation and follow-up lecture/exercises River Engineering: 15 h
- working on the 'Design Exercise River Engineering' (examination prerequisite): 25 h
- preparation and follow-up lecture/exercises Design of Hydraulic Structures: 15 h
- working on the 'Design Exercise Hydraulic Structures' (examination prerequisite): 25 h
- examination preparation: 40 h

total: 180 h

Recommendation

none

Literature

4.7 Module: Water and Energy Cycles (WSEM-AF701) [M-BGU-103360]

Responsible: Prof. Dr.-Ing. Erwin Zehe
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: Advanced Fundamentals (Version 2) (Compulsory Elective Modules)
Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
Profile Studies / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-106596 | Water and Energy Cycles | 6 CR | Zehe |

Competence Certificate

- 'Teilleistung' T-BGU-106596 with examination of other type according to § 4 Par. 2 No. 3
details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

Students are able to explain the most relevant processes of Hydrology including their feedbacks and limitations. They know the concepts to describe and predict these processes in the context of science and water management. Furthermore are they able to independently apply related computer-based tools for analysis and prediction for standard situations. Students are able to evaluate the required data and to quantify and evaluate the uncertainties related to the simulations and predictions.

Content

This module deepens the fundamentals of the water and energy cycles with particular regard to:

- the soil as the central control element of the water and energy cycle and the interplay of soil water and ground heat balance
- evaporation, energy balance and processes in the atmospheric boundary layer
- runoff and evaporation regimes in different hydro-climates;
- water balance and floods at the catchment scale and statistics for water management
- the interplay between runoff processes and soil water balance, and the soil as filter system
- concepts of hydrological similarity and comparative hydrology
- process-based and conceptual models to simulate water balances and predict flood

Module grade calculation

grade of the module is grade of the exam

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises: 40 h
- preparation of term paper (examination): 80 h

total: 180 h

Recommendation

basic knowledge of hydrology and engineering hydrology;
knowledge of programming with Matlab or another similar programing language; otherwise, it is strongly recommended to attend the course 'Introduction to Matlab (6224907)'
Literature
4.8 Module: Hydrogeology (WSEM-AF801) [M-BGU-103406]

Responsible
Prof. Dr. Nico Goldscheider

Organisation
KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Advanced Fundamentals (Version 2) (Compulsory Elective Modules)
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Supplementary Modules)

Credits
6

Grading scale
Grade to a tenth

Recurrence
Each summer term

Duration
1 term

Language
English

Level
4

Version
1

Mandatory
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106801</td>
<td>Hydrogeology</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
- ‘Teilleistung’ T-BGU-106801 with written examination according to § 4 Par. 2 No. 1
- details about the learning control see at the ‘Teilleistung’

Prerequisites
none

Module grade calculation
grade of the module is grade of the exam

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- General and Applied Hydrogeology lecture, exercise: 45 h
- independent study:
 - preparation and follow-up lectures, exercises General and Applied Hydrogeology: 65 h
 - examination preparation: 70 h
- total: 180 h

Recommendation
none

Literature
Module: Freshwater Ecology (WSEM-CC371) [M-BGU-104922]

Responsible: PD Dr.-Ing. Stephan Fuchs
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Cross-Cutting Methods & Competencies (Usage from 4/1/2019)
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules) (Usage from 4/1/2019)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (Usage from 4/1/2019)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules) (Usage from 4/1/2019)
- Profile Studies / Water Resources Engineering (Supplementary Modules) (Usage from 4/1/2019)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-109956</td>
<td>Applied Ecology and Water Quality</td>
<td>3 CR</td>
<td></td>
<td></td>
<td>Fuchs, Hilgert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-109957</td>
<td>Field Training Water Quality</td>
<td>3 CR</td>
<td></td>
<td></td>
<td>Fuchs, Hilgert</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-109956 with examination of other type according to § 4 Par. 2 No. 3
- 'Teilleistung' T-BGU-109957 with examination of other type according to § 4 Par. 2 No. 3

Details about the learning controls see at the respective 'Teilleistung'

Prerequisites

none

Competence Goal

Students get familiar with the basic principles of water ecology in surface waters. They are able to explain interactions between abiotic control factors (flow, chemistry, structure) and their relevance for the ecological status of standing waters and streams and to evaluate them critically. They become acquainted with field and laboratory techniques to establish water quality. With the help of these methods, they evaluate data-quality of information collected in the field regarding chemical, biological and structural water quality and determine the level of uncertainty intrinsic to the data-collection methods. Using case studies, students are able to convey and evaluate positive results as well as restrictions from water restoration processes.

Content

As part of the module, water ecology principles, their practical significance and implementation of restoring measures are presented. The following topics are covered:

- pollutants loads discharged into water bodies: discharge points, pollutants, sediment problems
- sampling methods
- oxygen content
- methods for the assessment of water quality and water general status
- practical exercises to measure water quality and condition in the field

Students get acquainted with practical examples of water protection and water remediation measures and they interpret and discuss them as part of an individual assignment. For this purpose, they implement their own framework, based on visible requirements and achievable targets.

Module grade calculation

grade of the module is CP weighted average of grades of the partial exams

Annotation

The number of participants in the courses is limited to 12 persons. The registration is to be made via ILIAS. The places are allocated considering the progress in the students' studies, with priority to students from Water Science and Engineering, then Civil Engineering and Geocology and further study programs. The attendance at the first meeting is mandatory. In case of absence the place will be assigned to a person on the waiting list.
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Applied Ecology and Water Quality lecture/seminar: 30 h
- Field Training Water Quality (block): 30 h

independent study:

- preparation of the seminar paper with presentation (partial examination): 60 h
- preparation of the report on Field Training Water Quality (partial examination): 60 h

total: 180 h

Recommendation
none

Literature
Jürgen Schwörbel, Methoden der Hydrobiologie, UTB für Wissenschaft 1999
kursbegleitende Materialien
4.10 Module: Experiments in Fluid Mechanics (WSEM-CC471) [M-BGU-103377]

Responsible: Prof. Dr. Olivier Eiff
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: Cross-Cutting Methods & Competencies
Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
Profile Studies / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-106760 | Experiments in Fluid Mechanics | 6 CR | Eiff |

Competence Certificate

- 'Teilleistung' T-BGU-106760 with examination of other type according to § 4 Par. 2 No. 3
- details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

Students relate the hydrodynamics theory and physical concepts to the observed physical reality. They apply their knowledge and skills for the comparative analysis of basic flow situations in physical models, using appropriate measurement technologies. They assess and evaluate the results and limitations by comparing their results with theoretical deductions. They extend their results of phenomena-oriented experiments with regard to practical applications in technical hydraulics and environmental flows. Acquired competence: operation of test facilities and instrumentation, data analysis and basic statistical error analysis, teamwork, written and oral communication.

Content

Lecture:

- typical set-up of hydraulic and aerodynamic models
- dimensional analysis, dimensionless parameters
- measurement instrumentation
- introduction to statistical error analysis
- analogy numerical/physical modeling, model distortion
- technical writing and oral presentation

Physical experiments:

- pipe flow with orifice plate
- open channel flow with gates and hydraulic jumps
- Venturi pipe flow with cavitation- Settling velocities of spheres
- diffusion of a turbulent air jet
- turbulent wake
- dam leakage

Module grade calculation

grade of the module is grade of the exam

Annotation

none
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture/lab exercise: 60 h

independent study:

- preparation and follow-up lectures: 30 h
- preparation of laboratory reports (part of the examination): 60 h
- preparation of oral examination (part of the examination): 30 h

total: 180 h

Recommendation
module 'Advanced Fluid Mechanics' (WSEM-AF401)

Literature
Tropea, C. et.al., 2007, Springer Handbook of Experimental Fluid Mechanics, Springer Verlag Berlin
4.11 Module: Fundamental Numerical Algorithms for Engineers (WSEM-CC571) [M-BGU-104920]

Responsible: Prof. Dr.-Ing. Markus Uhlmann
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: Cross-Cutting Methods & Competencies (Usage from 4/1/2019)
Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules) (Usage from 4/1/2019)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (Usage from 4/1/2019)
Profile Studies / Environmental System Dynamics & Management (Supplementary Modules) (Usage from 4/1/2019)
Profile Studies / Water Resources Engineering (Supplementary Modules) (Usage from 4/1/2019)

Credits: 3 Grading scale: Grade to a tenth Recurrence: Each winter term Duration: 1 term Language: English Level: 4 Version: 1

Mandatory

T-BGU-109953 Fundamental Numerical Algorithms for Engineers 3 CR Uhlmann

Competence Certificate
- 'Teilleistung' T-BGU-109953 with written examination according to § 4 Par. 2 No. 1

details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students understand the basic idea (and importance) of numerical methods for solving various mathematical problems arising in engineering context. The students are able to choose appropriate numerical algorithms for a given mathematical problem and implement the algorithms in a high-level programming language (e.g. Matlab).

Content
- finite precision arithmetic
- numerical solution of non-linear equation (rootfinding)
- numerical integration
- solving linear algebraic systems
- interpolation / approximation
- fourier transform
- solving ODE

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture: 30 h

independent study:
- preparation and follow-up lectures: 30 h
- examination preparation: 30 h

total: 90 h

Recommendation
good knowledge of basic calculus, linear algebra, and differential equations and familiarity with some higher-level programming language
4.12 Module: Introduction to Matlab (WSEM-CC772) [M-BGU-103381]

Responsible: PD Dr.-Ing. Uwe Ehret

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: Cross-Cutting Methods & Competencies
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Supplementary Modules)

Credits: 3
Grading scale: pass/fail
Recurrence: Each winter term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory

T-BGU-106765 Introduction to Matlab 3 CR Ehret

Competence Certificate
- ‘Teilleistung’ T-BGU-106765 with not graded accomplishment according to § 4 Par. 3
details about the learning control see at the ‘Teilleistung’

Prerequisites
none

Competence Goal
Students are familiar with common programming rules and the working environment and basic syntax of Matlab. They are capable of independently formulating and coding simple programs for data analysis and visualization as well as simulation of dynamical systems with Matlab. Students have thus gained the competence to independently solve computer-based modeling tasks in advanced courses. Students are able to solve problems and to present the related results in teamwork.

Content
- universal programming basics: Programing strategies, program structures, control structures, operators and variables, functions and objects, matrix calculations
- basics of Matlab: History, installation, graphical user interface, tool boxes, using help
- Matlab programming basics: syntax, debugging, reading and writing of files, data visualization

Take-home programming assignments:
- programs to analyze and visualize observation data
- design and implementation of a simple dynamical model
- preparation of ungraded assignments and presentation in small groups

Module grade calculation
not graded

Annotation
The course is limited to 60 participants. Please register via the student portal (Studierendenportal). Only in case that this should not be possible: Please register via e-mail to the responsible lecturer. Participants are selected according to their progress of study considering the following order: students of Water Science and Engineering, then students of Civil Engineering with focus 'Water and Environment', then other students.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture/exercise: 30 h

independent study:
- preparation and follow-up lecture/exercises: 10 h
- homework: 30 h
- take-home exam: 20 h

total: 90 h
Recommendation
none
4.13 Module: Analysis of Spatial Data (WSEM-CC773) [M-BGU-103762]

Responsible: Prof. Dr.-Ing. Erwin Zehe
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: Cross-Cutting Methods & Competencies (Usage from 4/1/2019)
Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules) (Usage from 4/1/2019)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (Usage from 4/1/2019)
Profile Studies / Environmental System Dynamics & Management (Supplementary Modules) (Usage from 4/1/2019)
Profile Studies / Water Resources Engineering (Supplementary Modules) (Usage from 4/1/2021)

Credits: 6 Grade to a tenth
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 2

Mandatory
T-BGU-106605 Geostatistics 6 CR Mälicke, Zehe

Competence Certificate
- 'Teilleistung' T-BGU-106605 with examination of other type according to § 4 Par. 2 No. 3
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students can explain and apply methods for analysis and simulation of spatially and temporally distributed environmental data. Based on this, they are capable of setting up experimental designs for environmental monitoring and evaluate the suitability of available data for different tasks. Students are able to critically assess the results of analysis and simulation tools and to quantify and evaluate the related uncertainties.

Content
- fundamentals of environmental systems theory, environmental monitoring and experimental design (data types, scale triplet, measuring methods)
- experimental variograms, directional variograms, indicator variograms, variogram fitting, anisotropy
- Kriging techniques: Ordinary Kriging, screening properties of Kriging, BLUE, pure nugget effect, cross validation, RMSE
- estimation of spatial patterns in nonstationary data (External Drift Kriging, Simple Updating)
- simulation of spatial patterns: turning Bands Simulation, smoothing problems of interpolation

Module grade calculation
grade of the module is grade of the exam

Annotation
IMPORTANT:
As from summer term 2024, the examination is an examination of other type.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture/exercise: 60 h

independent study:
- preparation and follow-up lecture/exercises inlc. presentation of an exercise (part of the examination): 60 h
- working on a project and preparation of a report (part of the examination): 60 h

total: 180 h
Recommendation
Basic knowledge in statistics
Module Hydrological Measurements in Environmental Systems [WSEM-PC732]
Knowledge of programming with Matlab; otherwise, it is strongly recommended to attend the course 'Introduction to Matlab' (6224907)

Literature
Module: Introduction to Environmental Data Analysis and Statistical Learning (WSEM-CC774-ENVDAT) [M-BGU-104880]

4.14 Module: Introduction to Environmental Data Analysis and Statistical Learning (WSEM-CC774-ENVDAT) [M-BGU-104880]

Responsible: PD Dr.-Ing. Uwe Ehret
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: Cross-Cutting Methods & Competencies (Usage from 4/1/2019)
Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules) (Usage from 4/1/2019)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (Usage from 4/1/2019)
Profile Studies / Environmental System Dynamics & Management (Supplementary Modules) (Usage from 4/1/2019)
Profile Studies / Water Resources Engineering (Supplementary Modules) (Usage from 4/1/2019)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory
T-BGU-109950 Homework 'Introduction to Environmental Data Analysis and Statistical Learning' 2 CR Ehret
T-BGU-109949 Introduction to Environmental Data Analysis and Statistical Learning 4 CR Ehret

Competence Certificate
- 'Teilleistung' T-BGU-109950 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-109949 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The students can explain and apply methods for analysis and simulation of environmental data. Based on this they are capable of evaluating the suitability of available data, analysis and simulation methods for different tasks. The students are able to critically assess the results of analysis and simulation tools and to quantify and evaluate the related uncertainties.

Content
- explorative data analysis
- data storage / data bases
- probability theory (short summary)
- statistical tests (short summary)
- Bayesian methods
- information theory
- time series
- statistical learning / machine learning basics
- supervised learning
- unsupervised learning

Module grade calculation
grade of the module is grade of the exam

Annotation
none
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises: 20 h
- preparation of Homework 'Introduction to Environmental Data Analysis and Statistical Learning' (exam prerequisite): 60 h
- examination preparation: 40 h

total: 180 h

Recommendation
preliminary knowledge in statistics, e.g. successful completion of Probability and Statistics (CC911), and Matlab programming skills, e.g. successful completion of Introduction to Matlab (CC772)

Literature

Module: Integrated Infrastructure Planning (WSEM-CC791) [M-BGU-103380]

4.15

Responsible: Dr. rer. nat. Charlotte Kämpf
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of:
- Cross-Cutting Methods & Competencies
 - Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
 - Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
 - Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
 - Profile Studies / Water Resources Engineering (Supplementary Modules)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106763</td>
<td>Booklet Integrated Infrastructure Planning</td>
<td>0 CR</td>
<td>Kämpf</td>
<td></td>
</tr>
<tr>
<td>T-BGU-106764</td>
<td>Integrated Infrastructure Planning</td>
<td>6 CR</td>
<td>Kämpf</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-106763 with not graded accomplishment according to § 4 Par. 3 as examiniatoin prerequisite
- 'Teilleistung' T-BGU-106764 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Prerequisites

none

Competence Goal

Students are able to rank interdisciplinary texts on development planning according to their relevance, and formulate relevant questions on this topic. Students can research systematically on a scientific problem, and they can use different technical terms. They are able to put the materials in the context of integrated development planning and current water resources problems to work on solutions for adapting to regional conditions.

Content

Socio-economic aspects:

- natural resources as economic goods
- scenario analysis of depletion and capacity of natural resources, assessment of values, additional costs
- coordination of activities on economic development; strategical planning, indicator systems
- cost-benefit analyses, investment criteria

Ecological aspects / environmental impact assessment:

- biodiversity, habitats, resilience, structure and dynamics of ecosystems; nutrient cycling
- bioindicators, ecosystem services
- history of environmental impact assessment (EIA), EIA in the EU, in other countries
- impact assessment in the EW -proje ct management (mitigation, compensation, monitoring, auditing)

Module grade calculation

grade of the module is grade of the exam

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture, seminar: 40 h

independent study:

- preparation and follow-up lectures, seminar: 20 h
- preparation of a booklet (examination prerequisite): 60 h
- examination preparation: 60 h

total: 180 h
Recommendation
none
4.16 Module: Environmental Communication (WSEM-CC792) [M-BGU-101108]

Responsible: Dr. rer. nat. Charlotte Kämpf

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: Cross-Cutting Methods & Competencies
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106620</td>
<td>Examination Prerequisite Environmental Communication</td>
<td>0 CR</td>
<td>Kämpf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-101676</td>
<td>Environmental Communication</td>
<td>6 CR</td>
<td>Kämpf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-106620 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-101676 with examination of other type according to § 4 Par. 2 No. 3

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
(see German version)

Content
(see German version)

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- seminar (lecture): 20 h

independent study:
- preparation and follow-up seminar: 40 h
- preparation of literature annotations and short presentation (exam prerequisite): 45 Std.
- preparation of presentation, manuscript and poster (exam): 75 Std.

total: 180 h

Recommendation
none

Literature
(see German version)
4.17 Module: Probability and Statistics (WSEM-CC911) [M-MATH-103395]

Responsible: PD Dr. Bernhard Klar

Organisation: KIT Department of Mathematics

Part of: Cross-Cutting Methods & Competencies
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-MATH-106784 | Probability and Statistics | 4 CR | Klar |

Competence Certificate
- 'Teilleistung' T-BGU-106784 with oral examination according to § 4 Par. 2 No. 2
- details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
By the end of the course, students will

- have basic knowledge of probability theory, and be able to model simple random phenomena,
- understand the basic differences between descriptive and inferential statistics,
- know basic statistical methods, and be able to apply this knowledge to new examples.

Content
The lecture provides a concise introduction to probability theory and covers some important statistical methods. The methods covered are illustrated by many examples and exercises from environmental engineering and water management.

Key concepts:
- Random experiments, sample space, events
- probability, conditional probability, independent events
- random variables, probability distribution
- probability mass function, density function
- expected value, moments, quantiles
- error propagation
- sample mean, sample variance
- point estimate, sampling distribution
- linear regression and correlation
- confidence interval
- statistical tests

Module grade calculation
grade of the module is grade of the exam

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 45 h

independent study:
- preparation and follow-up lectures, Exercises: 45 h
- examination preparation: 30 h

total: 120 h
Recommendation
none
4.18 Module: Numerical Mathematics for Students of Computer Science and Engineering (WSEM-CC912) [M-MATH-103404]

- **Responsible:** Prof. Dr. Christian Wieners
- **Organisation:** KIT Department of Mathematics
- **Part of:** Cross-Cutting Methods & Competencies
 - Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
 - Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
 - Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
 - Profile Studies / Water Resources Engineering (Supplementary Modules)

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102242</td>
<td>Numerical Mathematics for Students of Computer Science</td>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate

- ‘Teilleistung’ T-BGU-102242 with written examination according to § 4 Par. 2 No. 1
- details about the learning control see at the 'Teilleistung'

Prerequisites

- none

Module grade calculation

- grade of the module is grade of the exam

Workload

- contact hours (1 HpW = 1 h x 15 weeks):
 - lecture, exercise: 45 h
- independent study:
 - preparation and follow-up lectures, exercises: 65 h
 - examination preparation: 70 h
- total: 180 h

Recommendation

- advanced mathematics: analysis; e.g. Advanced Mathematics I & II [0131000; 0180800]
4.19 Module: Instrumental Analysis (WSEM-CC921) [M-CIWVT-103437]

Responsible: Dr. Gerald Brenner-Weiβ
apl. Prof. Dr. Gisela Guthausen

Organisation: KIT Department of Chemical and Process Engineering

Part of: Cross-Cutting Methods & Competencies
Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
Profile Studies / Water Resources Engineering (Supplementary Modules)

Credits 6
Grading scale Grade to a tenth
Recurrence Each summer term
Duration 1 term
Language English
Level 4
Version 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106837</td>
<td>Instrumental Analytics</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-CIWVT-106836</td>
<td>Organic Trace Analysis of Aqueous Samples</td>
<td>2 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
- ‘Teilleistung’ T-BGU-106836 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- ‘Teilleistung’ T-BGU-106837 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective ‘Teilleistung’

Prerequisites
none

Competence Goal
Students are familiar with the important methods of modern instrumental analysis and their range of application. They can explain the basic physical principles of the methods. Students are able to develop solutions for analytical problems, to choose adequate procedures for sample preparation and measuring techniques. They can evaluate the measurement data and interpret the results.

Content
Instrumental Analysis:
Introduction to selected methods of modern instrumental analysis:
- Optical methods
- Magnetic resonance methods, mass spectrometry
- Imaging methods as MRT, µCT and optical methods (CLSM and OCT)
- Basics of data analysis and image processing

Organic Trace Analysis of Aqueous Samples:
Laboratory course on methods for sample concentration, sample preparation, and analysis of organic trace compounds in aqueous samples using HPLC coupled with tandem mass spectrometry (LCMSMS)
To participate in the lab course, please make an appointment with Dr. Brenner-Weiβ (IFG).

Module grade calculation
grade of the module is grade of the exam

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Instrumental Analysis lecture: 30 h
- Organic Trace Analysis of Aqueous Samples practical training: 30 h

independent study:
- preparation and follow-up lectures Instrumental Analysis: 60 h
- analyses and report on laboratory work (examination prerequisite): 30 h
- examination preparation: 30 h

total: 180 h
Recommendation
module 'Fundamentals of Water Quality (AF201)'
4.20 Module: Water – Energy – Environment Nexus in a Circular Economy:
Research Proposal Preparation (WSEM-CC922) [M-CIWVT-106680]

Responsible: Prof. Dr. Andrea Iris Schäfer

Organisation: KIT Department of Chemical and Process Engineering

Part of: Cross-Cutting Methods & Competencies (Usage from 4/1/2024)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

Competence Certificate
- 'Teilleistung' T-BGU-113433 with examination of other type according to § 4 Par. 2 No. 3
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The goal of this course is to get an overview of current challenges in the circular economy focused on the water – energy – environment nexus. Based on individual student interest a topic will be identified and a research plan developed encompassing a thorough background research to establish the state-of-the-art, identification of a specific research problem and research questions suitable to solve this problem. Concepts of novelty and excellence will be explored in an international context. Following the individual topic choice, the research proposal will be developed individually in a tutor group (divided into water, energy, environment) while lectures on required skills will accompany this process. As an outlook beyond this course, criteria to consider when looking for research careers such as applying for funding/scholarships, considering choices in research environment and supervision, performance indicators in research and university rankings will be introduced to enable informed decisions. The proposal will be communicated in writing, as a brief presentation and as a poster, which equips students brilliantly not only for a masters thesis but also a future research publication or a PhD.

Content
In a time of limiting resources, climate change and ever increasing demand for resources the concept of a circular economy is inevitable to create a more sustainable utilization of our key resources, water, energy and ‘environment’. Concepts of zero liquid discharge, water reuse, carbon net zero, resource recovery and environmental pollution reduction are all part of this concept where where waste is returned to use. The water – energy – environment nexus is the particular focus of this course. Global water issues, water and wastewater treatment, desalination, water reuse, micropollutants, decentralized systems, water & sanitation in international development, renewable energies, environmental pollution, climate change, resource recovery – and many more topics will inspire future research.

Module grade calculation
grade of the module is grade of the exam

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Circular Economy Water Energy Environment: Research Proposal Preparation lecture: 60 h
- independent study:
 - development of a research proposal concept: 50 h
 - preparation of the research proposal and group presentations: 40 h
- total: 150 h

Recommendation
none
4.21 Module: Remote Sensing and Positioning (WSEM-CC931) [M-BGU-103442]

Responsible: Dr.-Ing. Michael Mayer
Dr.-Ing. Uwe Weidner

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: Cross-Cutting Methods & Competencies
Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
Profile Studies / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>English</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

- T-BGU-101759 Methods of Remote Sensing, Prerequisite
 1 CR
 Weidner
- T-BGU-109329 Fundamentals of Environmental Geodesy Part B
 1 CR
 Kutterer, Mayer
- T-BGU-106843 Remote Sensing and Positioning
 4 CR
 Mayer, Sumaya, Weidner

Competence Certificate

- 'Teilleistung' T-BGU-106843 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-101759 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-109329 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite

details about the learning controls see at the respective 'Teilleistung'

Prerequisites

none

Competence Goal

Positioning (Fundamentals of Environmental Geodesy Part B):
The students know the basic concepts of GNSS positioning and are able to familiarize themselves with new GNSS-related topics. The students work autonomous and self-organized in the field of geodesy and have communicative as well as organizational competences with respect to collaboration, presentation and discussion.

Remote Sensing:
Students are able to explain the fundamentals of multispectral remote sensing, namely the basics of pixel- and segment-based classification approaches, their communalities and their differences. Students are able to use their knowledge and transfer it to other fields of applications.

Content

Positioning (Fundamentals of Environmental Geodesy Part B):

- Contributions of Geodesy to Water Science
- GNSS positioning: Segments, signals, code and phase measurements, error sources and error reduction, processing strategies, differential and absolute positioning, real-time/post-processing, RTK and static mode, Precise Point Positioning, services
- Height concepts, vertical reference frames
- GNSS levelling

Remote Sensing:

- This module provides an overview of multispectral remote sensing. It introduces to concepts of data processing, also including sensor aspects where required. Based on a selection of applications like land cover/used classification and change detection / monitoring approaches are presented and compared. The module consists of lectures and labs.

Module grade calculation

grade of the module is grade of the exam
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Fundamentals of Environmental Geodesy Part B lecture, exercise: 30 h
- Methods of Remote Sensing lecture, exercise: 30 h

independent study: 120 h

- consolidation of Fundamentals of Environmental Geodesy Part B by recapitulation of lectures and exercises, by use of references, and by own inquiry: 30 h
- preparations of exercises and presentations Fundamentals of Environmental Geodesy Part B (examination prerequisite): 30 h
- consolidation of Methods of Remote Sensing by recapitulation of lectures and exercises, by use of references, and by own inquiry: 15 h
- preparations of exercises Methods of Remote Sensing, Prerequisite (examination prerequisite): 15 h
- preparations for examination Remote Sensing and Positioning: 30 h

total: 180 h

Recommendation

fundamentals of geometric optics, oscillations and waves, linear algebra (vectors, coordinate geometry, trigonometry)
Module: Introduction to GIS for Students of Natural, Engineering and Geo Sciences (WSEM-CC933) [M-BGU-101846]

Responsible: Dr.-Ing. Sven Wursthorn
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of:
- Cross-Cutting Methods & Competencies
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-103541</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite</td>
<td>3 CR</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>German</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This item will not influence the grade calculation of this parent.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101681</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>3 CR</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>German</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-103541 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-101681 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Module grade calculation
grade of the module is grade of the exam

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise: 60 h

independent study:

- preparation and follow-up lectures, exercises: 60 h
- preparation online test (examination prerequisite): 15 h
- examination preparation: 45 h

total: 180 h

Recommendation
none
4.23 Module: Geodata Infrastructures and Web-Services (WSEM-CC935) [M-BGU-101044]

Responsible: Dr.-Ing. Sven Wursthorn
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: Cross-Cutting Methods & Competencies
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Item</th>
<th>Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101757</td>
<td>Geodata Infrastructures and Web-Services, Prerequisite</td>
<td>3 CR</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>T-BGU-101756</td>
<td>Geo Data Infrastructures and Web Services</td>
<td>1 CR</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-101757 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-101756 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
None

Module grade calculation
grade of the module is grade of the exam

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 20 h
independent study:
- preparation and follow-up lectures, exercises: 20 h
- working on exercises (examination prerequisite): 60 h
- examination preparation: 40 h

total: 120 h

Recommendation
None
4.24 Module: Introduction to Python (WSEM-CC936) [M-BGU-106199]

Responsible: Prof. Dr. Jan Cermak
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: Cross-Cutting Methods & Competencies (Usage from 10/1/2022)
Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules) (Usage from 10/1/2022)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (Usage from 10/1/2022)
Profile Studies / Environmental System Dynamics & Management (Supplementary Modules) (Usage from 10/1/2022)
Profile Studies / Water Resources Engineering (Supplementary Modules) (Usage from 10/1/2022)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-112598 | Introduction to Python | 3 CR | Cermak, Fuchs |

Competence Certificate

- 'Teilleistung' T-BGU-112598 with not graded accomplishment according to § 4 Par. 3
 details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

The aim of this course is providing knowledge on the basic syntax and structure of the programming language Python. Students can adapt and write basic Python code following a workflow in their individual working environment. By the end of this course students are capable implementing simple algorithms and visualizing scientific data in Python.

Content

- Setup a working environment in Python (installation, virtual environments)
- Python fundamentals (syntax, data types, control flow, functions, objects)
- Working with and visualizing scientific datasets in Python

Module grade calculation

not graded

Annotation

None

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 20 h

independent study:

- preparation and follow-up lecture/exercises: 20 h
- homework: 30 h
- take-home exam: 20 h

total: 90 h

Recommendation

none

Base for

n.a.
Module: Language Skills 1 (2 CP) (WSEM-CC949) [M-BGU-103466]

Responsible: Dr.-Ing. Michele Trevisson
Organisation: University
Part of: Cross-Cutting Methods & Competencies

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Language Skills 1 (Election: 2 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106884</td>
<td>Wildcard 1 Language Skills 1</td>
<td>2 CR</td>
</tr>
<tr>
<td>T-BGU-106885</td>
<td>Wildcard 2 Language Skills</td>
<td>2 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

One or more learning controls, depending on the selected module, can be taken in the form of a written test. These can be graded or not graded.

Attendance of classes is compulsory. Further information is provided by Sprachenzentrum (www.spz.kit.edu), Studienkolleg für ausländische Studierende (www.stk.kit.edu).

The learning controls can be taken graded or not graded. The registration is done directly at the ‘Sprachenzentrum’ (www.spz.kit.edu) or ‘Studienkolleg für ausländische Studierende’ (www.stk.kit.edu) but not online. For crediting after passing the course please contact the Study Program Service (Studiengangservice Bau Geo Umwelt', https://www.bgu.kit.edu/studiengangservice.php).

Prerequisites

Only one module can be selected. This module must not be selected together with one of the modules

- M-BGU-103468 - Language Skills 2 (3 CP)
- M-BGU-103469 - Language Skills 3 (4 CP)
- M-BGU-103470 - Language Skills 4 (5 CP)
- M-BGU-103471 - Language Skills 5 (6 CP)

The same is valid for the other modules.

Language courses in the native language of the student are not accredited.

English language courses below or at the level required for admission to the master's degree program Water Science & Engineering are not accredited. By this, courses with the GER level C1 or higher can be selected. Independent of this, courses regarding writing and presentation skills can be selected ('Scientific Writing', 'Writing Skills', 'Effective Presentations').

Competence Goal

Students acquire skills in cross-cultural communication.

Content

Students can acquire and improve knowledge of a language of their choice. Information on the courses offered and on the registration procedure are given at: www.spz.kit.edu.

Students who are not native German speakers may attend German courses at Studienkolleg: www.stk.kit.edu/deutsch_kurse.php.

Module grade calculation

not graded

Annotation

Language Skills can be taken in extent of 2 - 6 CPs. For the desired amount of CPs the respective module has to be selected. The Module Handbook provides exemplarily the description for the module 'M-BGU-103466 - Language Skills 1 (2 CP)'.

The module can only be selected within the subject 'Cross-Cutting Methods and Competencies' or accredited as additional accomplishment.

Workload

corresponding to the selected language course/s

Recommendation

none
4.26 Module: Water Technology (WSEM-PA221) [M-CIWVT-103407]

Responsible: Prof. Dr. Harald Horn
Organisation: KIT Department of Chemical and Process Engineering
Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Compulsory Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Compulsory Modules A)

Mandatory

| T-CIWVT-106802 | Water Technology | 6 CR | Horn |

Competence Certificate
- 'Teilleistung' T-CIWVT-106802 with oral examination according to § 4 Par. 2 No. 2
details about learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students learn fundamental knowledge in water chemistry and how to apply it to processes in aquatic systems in general and in reactors for water treatment. Water treatment will be taught for drinking water and partly waste water. The students are able to apply physical, chemical and biochemical treatment for the respective removal of particulate and dissolved components in water. They are able to use the fundamental design parameters for the different types of unit operations.

Content
Water cycle, different types of raw water (ground and surface water). Water as solvent, carbonate balance, differentiation between microbiological and chemical population. Unit operations: sieving, sedimentation, filtration, flocculation, flotation, ion exchange, aeration, oxidation, disinfection, adsorption). For all unit operations design parameters will be provided. Simple 1D models will be discussed for description of kinetics and retention time in reactors for water treatment.

Module grade calculation
grade of the module is grade of the exam

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 45 h
independent study:
- preparation and follow-up lectures, exercises: 60 h
- examination preparation: 75 h
total: 180 h

Recommendation
none

Literature
Lecture notes will be provided in ILIAS
4.27 Module: Membrane Technologies in Water Treatment (WSEM-PA222) [M-CIWVT-105380]

Responsible: Prof. Dr. Harald Horn
Dr.-Ing. Florencia Saravia

Organisation: KIT Department of Chemical and Process Engineering

Part of:
Profile Studies / Water Technologies & Urban Water Cycle (Compulsory Modules) (Usage from 4/1/2020)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (Usage from 4/1/2020)
Profile Studies / Environmental System Dynamics & Management (Supplementary Modules) (Usage from 4/1/2020)
Profile Studies / Water Resources Engineering (Compulsory Modules A) (Usage from 4/1/2020)

Credits 6
Grading scale Grade to a tenth
Recurrence Each summer term
Duration 1 term
Language English
Level 4
Version 3

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-113235</td>
<td>Exercises: Membrane Technologies</td>
<td>1 CR Horn, Saravia</td>
</tr>
<tr>
<td>T-CIWVT-113236</td>
<td>Membrane Technologies in Water Treatment</td>
<td>5 CR Horn, Saravia</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-CIWVT-113235 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-CIWVT-113236 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
Students have a fundamental knowledge on membrane technology in water and waste water treatment. They learn how the different membrane systems (reverse osmosis, nanofiltration, ultrafiltration, microfiltration, and dialysis) have to be applied to produce a certain water quality. They are able to design such systems.

Content

- The solution-diffusion model
- Concentration polarization and the consequences for membrane module design.
- Membrane production and properties.
- Membrane configuration and design
- Membrane systems for desalination and brackish water treatment
- Membrane bio reactors for waste water treatment
- Bio fouling, scaling and prevention of both
- Excursions with introduction: applied membrane processes in waste water disposal and drinking water supply.

Module grade calculation
grade of the module is grade of the exam

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise: 45 h

independent study:

- preparation and follow-up lectures, exercises: 60 h
- preparation of excursion reports (examination prerequisite): 25 h
- examination preparation (examination): 50 h

total: 180 h

Recommendation
module 'Water Technology (WSEM-PA221)'

Water Science and Engineering (Master of Science (M.Sc.), ER/SPO 2016)
Literature

- Vorlesungsunterlagen in ILIAS
Module: Practical Course in Water Technology (WSEM-PA223) [M-CIWVT-103440]

Responsible: Dr. Gudrun Abbt-Braun
Dr. Andrea Hille-Reichel
Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of:
Profile Studies / Water Technologies & Urban Water Cycle (Compulsory Modules)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
Profile Studies / Water Resources Engineering (Compulsory Modules A)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106840</td>
<td>Practical Course in Water Technology</td>
<td>3 CR Abbt-Braun, Hille-Reichel, Horn</td>
</tr>
<tr>
<td>T-CIWVT-110866</td>
<td>Excursions: Water Supply</td>
<td>1 CR Abbt-Braun, Horn</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-CIWVT-110866 with not graded accomplishment according according to § 4 Par. 3
- 'Teilleistung' T-CIWVT-106840 with examination of other type according to § 4 Par. 2 No. 3

Details about the learning controls see at the respective 'Teilleistung'

Prerequisites
The module "Water Technology (WSEM-PA221)" has to be begun, i.e. at least the registration has to be made.

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-CIWVT-103407 - Water Technology must have been started.

Competence Goal
Students can explain the most important processes in water treatment. They are able to do calculations, and to compare and interpret data. They learn how to use different methods, and to interpret different processes.

Content
6 different experiments out of: equilibrium study of the calcium carbonate system, flocculation, adsorption, oxidation, atomic absorption spectroscopy, ion chromatography, liquid chromatography, sum parameter, and an oral presentation of the student. In addition, excursions to two different treatment plants (waste water, drinking water).

Module grade calculation
grade of the module is the grade of the exam

Workload
contact hours (1 H přW = 1 h x 15 weeks):

- lecture/practical training, excursions: 36 Std.
- independent study:
 - preparation of reports on practical training (examination): 40 h
 - preparation of excursion reports (not graded accomplishment): 10 h
 - examination preparation: 34 h

Total: 120 h

Recommendation
none
Literature

- Vorlesungsskript im ILIAS
- Praktikumsskript
Module: Biofilm Systems (WSEM-PA224) [M-CIWVT-103441]

Responsibility: Dr. Andrea Hille-Reichel
Dr. Michael Wagner

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Compulsory Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Compulsory Modules A)

Credits 4
Grading scale Grade to a tenth
Recurrence Each summer term
Duration 1 term
Language English
Level 4
Version 1

Mandatory
T-CIWVT-106841 Biofilm Systems 4 CR Hille-Reichel, Wagner

Competence Certificate
- 'Teilleistung' T-CIWVT-106841 with oral examination according to § 4 Par. 2 No. 2
- Details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students are able to describe the structure and function of biofilms in natural habitats and technical applications and explain the main influencing factors and processes for the formation of certain biofilms. They are familiar with methods for visualizing the structures.

Content
This lecture aims at providing an overview of biofilm systems, their development, functions, applications, and the techniques used to investigate them. Thus, topics involved will include basics of (biofilm) microbiology, natural (environmental) biofilm systems, their application in technical systems (reactors), and methods used to quantify biofilm development and performance (i.e., imaging techniques, digital image analysis).

Module grade calculation
grade of the module is grade of the exam

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture: 30 h

Independent study:
- preparation and follow-up lectures: 30 h
- examination preparation: 60 h

Total: 120 h

Recommendation
none
Module: Industrial Wastewater Treatment (WSEM-PA226) [M-CIWVT-105903]

Responsible: Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Compulsory Modules) (Usage from 4/1/2022)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (Usage from 4/1/2022)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules) (Usage from 4/1/2022)
- Profile Studies / Water Resources Engineering (Compulsory Modules A) (Usage from 4/1/2022)

Credits: 4

Grading scale: Grade to a tenth

Recurrence: Each summer term

Duration: 1 term

Language: English

Level: 5

Version: 1

Mandatory

<table>
<thead>
<tr>
<th>T-CIWVT-111861</th>
<th>Industrial Wastewater Treatment</th>
<th>4 CR</th>
<th>Horn</th>
</tr>
</thead>
</table>

Competence Certificate

- ‘Teilleistung’ T-CIWVT-111861 with oral examination according SPO/ER § 4 Par. 2 No. 2

details about learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

The students will be able to differentiate the composition of different types of industrial wastewater. Moreover, the students will have knowledge of treatment technologies, which can be applied to industrial wastewater. The students will be able to judge the biodegradability of industrial wastewater and can use that to design the needed treatment trains. The students do know treatment steps, which can be used enhance reuse the treated wastewater.

Content

This module provides the huge range of industrial wastewater composition for different industries (food, pulp and paper, chemical and pharmaceutical industry). The biodegradability will be analyzed and discussed with respect to potential treatment systems. A main focus will be biological treatment systems, especially biofilm reactors. Finally, the potential of water reuse in industrial processes will be discussed and solution will be provided.

Module grade calculation

grade of the module is grade of the exam

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture: 30 h

independent study:

- preparation and follow-up lectures: 60 h
- examination preparation: 30 h

total: 120 h

Recommendation

none

Literature

Module: Wastewater Treatment Technologies (WSEM-PA321) [M-BGU-104917]

Responsible: Dr.-Ing. Mohammad Ebrahim Azari Najaf Abad
PD Dr.-Ing. Stephan Fuchs

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: Profile Studies / Water Technologies & Urban Water Cycle (Compulsory Modules) (Usage from 4/1/2019)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (Usage from 4/1/2019)
Profile Studies / Environmental System Dynamics & Management (Supplementary Modules) (Usage from 4/1/2019)
Profile Studies / Water Resources Engineering (Compulsory Modules A) (Usage from 4/1/2019)

Credits 6
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language English
Level 4
Version 4

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 CR</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-109948 with written examination according to § 4 Par. 2 No. 1 details about the learning control see at the 'Teilleistung'

Prerequisites none

Competence Goal
Students acquire knowledge about typical techniques and facilities in wastewater treatment at local and international level. They are able to perform a technical evaluation and describe dimensioning approaches taking into consideration legal boundary conditions. Students analyze, evaluate and optimize operation of plant technologies. They focus on energy-efficient plant designs considering the most relevant factors affecting the total costs. Students can analyze the situation in emerging and developing countries making a comparison with that in industrialized countries. Based on that, they are able to develop water-related management strategies.

Content
Students gain deep knowledge about design and operation of typical process technologies in municipal wastewater treatment in Germany and abroad. They analyze, evaluate the applied technologies and take decisions when new and more holistic oriented methods can be implemented. Different mechanical, biological and chemical treatment technologies are considered, whereby the treatment of waste water from households and industry as well as the treatment of rainwater is discussed. The visit of at least one municipal wastewater treatment plant in Germany completes the course. The course includes lab work in groups to learn about basic measuring and analytical procedures in wastewater treatment plants.

Module grade calculation
grade of the module is grade of the exam

Annotation
The number of participants in the course is limited to 30 persons. The registration is to be made via ILIAS. The places are allocated considering the progress in the students' studies, with priority to students from Water Science and Engineering, then Civil Engineering, Chemical and Process Engineering, Geocology and further study programs.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture/exercise: 60 h

independent study:
- preparation and follow-up lecture/exercises: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation
module Urban Water Infrastructure and Management (AF301)
Literature
ATV-DVWK (1997) Handbuch der Abwassertechnik: Mechanische Abwasserreinigung, Band 6, Verlag Ernst & Sohn, Berlin
4.32 Module: Stormwater Management (WSEM-PA322) [M-BGU-106112]

Responsible: Dr.-Ing. Mohammad Ebrahim Azari Najaf Abad
PD Dr.-Ing. Stephan Fuchs

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: Profile Studies / Water Technologies & Urban Water Cycle (Compulsory Modules) (Usage from 10/1/2022)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (Usage from 10/1/2022)
Profile Studies / Environmental System Dynamics & Management (Supplementary Modules) (Usage from 10/1/2022)
Profile Studies / Water Resources Engineering (Compulsory Modules A) (Usage from 10/1/2022)

Credits 6
Grading scale Grade to a tenth
Recurrence Each summer term
Duration 1 term
Language English
Level 4
Version 1

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Stormwater Management</th>
<th>6 CR</th>
<th>Fuchs</th>
</tr>
</thead>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-112370 with examination of other type according to § 4 Par. 2 No. 1
 details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students will learn about principles, operations, and simulation of separate and combined sewer systems. Students get familiar with technical plants for stormwater treatment. They can explain operating principles of individual system components as well as assess their suitability for specific applications and apply basic dimensioning approaches.

Content
Lectures are followed by several guided site visits, descriptions, and evaluations of different stormwater treatment plants: stormwater sedimentation tanks, stormwater overflow tanks, and retention soil filters. Settlement characteristics and dimensioning approaches for the design of stormwater treatment facilities will be discussed and evaluated during the site visits. The course wraps up with group laboratory work to learn measurements for sedimentation column and sedimentation basin experiments to evaluate sedimentation characteristics and conduct relevant measurements.

Module grade calculation
grade of the module is grade of the exam

Annotation
The attendance of the site visits and the lab work is mandatory.
The number of participants in the course is limited to 20 persons. The registration is made via ILIAS. The places are allocated considering the progress in the students' studies, with priority to students from Water Science and Engineering, then Civil Engineering, Geocology and further study programs.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture/exercise: 60 h
independent study:
- preparation and follow-up lecture/exercises: 60 h
- preparation of report and presentation (examination): 60 h
total: 180 h

Recommendation
basic knowledge in sanitary engineering, module 'Urban Water Infrastructure Management' (WSE-AF301)
Literature

ATV-DVWK (1997) Handbuch der Abwassertechnik: Mechanische Abwasserreinigung, Band 6, Verlag Ernst & Sohn, Berlin

4.33 Module: Modeling Wastewater Treatment Processes (WSEM-PA323) [M-BGU-106113]

Responsible: Dr.-Ing. Mohammad Ebrahim Azari Najaf Abad

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Compulsory Modules) (Usage from 10/1/2022)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (Usage from 10/1/2022)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules) (Usage from 10/1/2022)
- Profile Studies / Water Resources Engineering (Compulsory Modules A) (Usage from 10/1/2022)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each summer term

Duration: 1 term

Language: English

Level: 4

Version: 1

Mandatory

| T-BGU-112371 | Modeling Wastewater Treatment Processes | 6 CR | Azari Najaf Abad |

Competence Certificate

- 'Teilleistung' T-BGU-112371 with examination of other type according to § 4 Par. 2 No. 3
- details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

The students will be able to learn the basics of wastewater treatment modeling to develop a matrix for a biological model. Another objective is being able to work with several relevant computer software as tools for modeling wastewater treatment processes and running sensitivity analysis, calibration, and validation. At the end of this course, the students will be able to apply the theory concerning modeling practice in case studies with real datasets using one of the relevant software they learned. During the presentation, they will discuss and explain the outcome of the model.

Content

The course deals with the basis of wastewater modeling (kinetics, stoichiometry, mass balances, hydraulics, mixing, and matrix notation), an introduction of existing activated sludge models (ASM1, ASM2, ASM3, ASM2d), and a selection of computer programs (AQUASIM, SIMBA, GPS-X, and SUMO) in which the models can be built in and the protocol for the development of calibrated activated sludge models will be practiced. Different adjustments to basic ASM models for characterization of biofilm and granular sludge model, as well as anaerobic digestion models (ADM), will be also discussed. Besides the presentations, exercises form a part of the course. Finally, case studies with real datasets on modeling wastewater treatment plants will be practiced.

Module grade calculation

grade of the module is grade of the exam

Annotation

The number of participants in the course is limited to 20 persons. The registration is made via ILIAS. The places are allocated considering the progress in the students’ studies, with priority to students from Water Science and Engineering, then Civil Engineering, Chemical and Process Engineering, Geocology and further study programs.

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises: 60 h
- preparation of report and presentation (examination): 60 h

total: 180 h

Recommendation

Vorkenntnisse in Siedlungswasserwirtschaft, Modul Urban Water Infrastructure and Management (WSEM-AF301)
Literature
Module: Water Distribution Systems (WSEM-PA621) [M-BGU-104100]

Responsible: Dr.-Ing. Peter Oberle

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Compulsory Modules) (Usage from 4/1/2018)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (Usage from 4/1/2018)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules) (Usage from 4/1/2018)
- Profile Studies / Water Resources Engineering (Compulsory Modules A) (Usage from 4/1/2018)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-108485</td>
<td>Project Report Water Distribution Systems</td>
<td>2 CR</td>
<td>Oberle</td>
</tr>
<tr>
<td>T-BGU-108486</td>
<td>Water Distribution Systems</td>
<td>4 CR</td>
<td>Oberle</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-108485 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-108486 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
Students will have profound knowledge of the components and operational requirements of water supply systems. They are enabled to plan, design and optimize water distribution systems. They are capable to critically analyze concepts and designs based on their knowledge. Participants are able to set up and apply numerical models of water distribution systems for planning and analysis. Students have competences in work organization, presentation and discussion of results.

Content
This course teaches the basics and methods for analyzing and planning water distribution systems using hydraulic simulation models. The modeling and application of hydraulic models for the analysis and planning of water distribution networks are learned in a project work during the semester. In the project work, a given distribution network is to be modeled and analyzed. Solutions are to be developed for any deficiencies. Furthermore, a network extension is to be planned and dimensioned. The necessary specialist knowledge (basics of water distribution, modeling and pipe network calculation as well as application of ArcGIS and EPANET, determination of water losses and water demand values, model calibration and dimensioning) is taught in individual course units. The relevant technical regulations (DIN, DVGW) are also presented.

The content of the module/course pursue the following UN Sustainable Goals:
- SDG 6 Clean Water and Sanitation
- SDG 9 Industry, Innovation and Infrastructure

Module grade calculation
grade of the module is grade of the exam

Annotation
Further information on the course/module can be found at: https://wb.iwu.kit.edu/education.php.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture/exercise: 60 h

independent study:
- preparation and follow-up lecture/exercises: 30 h
- project work water distribution (exam prerequisite): 60 h
- examination preparation: 30 h

total: 180 h
Recommendation
hydromechanics (specifically pipe hydraulics)

Literature
Schrifttum zur Vorlesung (auf Deutsch und Englisch)
4.35 Module: Applied Microbiology (WSEM-PA982) [M-CIWVT-103436]

Responsible: Prof. Dr. Thomas Schwartz
Andreas Tiehm

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Compulsory Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Compulsory Modules A)

Credits 8
Grading scale Grade to a tenth
Recurrence Each term
Duration 2 terms
Language English
Level 4
Version 1

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106834</td>
<td>Microbiology for Engineers</td>
<td>4 CR</td>
<td>Schwartz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-106835</td>
<td>Environmental Biotechnology</td>
<td>4 CR</td>
<td>Tiehm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-CIWVT-106834 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-CIWVT-106835 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
Students can explain the microbiological principles and their technical applications. Students are able to apply technically relevant biochemical and molecular biology issues to ecological, biotechnical and environmental processes. They can analyze and evaluate factors limiting operations in e.g. biotechnology and water technology and can combine processes for enhanced turnover rates in the sense of ecology and/or economy.

Content
Main issues are the structures and functions of microorganisms, their interactions with global element cycles and other organisms, the microbial impact on energy and corrosion as well as strategies against microbes. Basing on the fundamental metabolism biotechnology operations and specific monitoring strategies are presented.

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Microbiology for Engineers lecture: 30 h
- Environmental Biotechnology lecture: 30 h

independent study:

- preparation and follow-up lectures Microbiology for Engineers: 45 h
- examination preparation Microbiology for Engineers: 45 h
- preparation and follow-up lectures Environmental Biotechnology: 45 h
- examination preparation Environmental Biotechnology: 45 h

Recommendation
understanding of microbiological processes in the environment and in technical systems
Module: Environmental Fluid Mechanics (WSEM-PB421) [M-BGU-103383]

Responsible: Prof. Dr. Olivier Eiff

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Profile Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Compulsory Modules B)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each winter term

Duration: 1 term

Language: English

Level: 4

Version: 1

Mandatory

| T-BGU-106767 | Environmental Fluid Mechanics | 6 CR | Eiff |

Competence Certificate

- 'Teilleistung' T-BGU-106767 with written examination according to § 4 Par. 2 No. 1
- details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

Students identify fundamental hydrodynamic processes in the natural environment in water and air applications and solve related problems. They can relate the observed phenomena to fundamental principles of hydrodynamics and to the specific nature of the flow conditions. They can critically evaluate the different models and approximations made to obtain solutions and predictions and can make first estimates.

Content

This module covers the fundamental concepts and flow models of environmental fluid mechanics in both water and air. The topics include turbulence structure in rivers and open channels, diffusion and dispersion, atmospheric boundary layers, internal waves, instabilities and mixing, stratified turbulence, buoyant jets and plumes.

Module grade calculation

grade of the module is grade of the exam

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation

modules 'Advanced Fluid Mechanics (AF401)', 'Fluid Mechanics of Turbulent Flows (PB523)'

Water Science and Engineering (Master of Science (M.Sc.), ER/SPO 2016)
Module Handbook as of 19/03/2024
Module: Advanced Computational Fluid Dynamics (WSEM-PB522) [M-BGU-103384]

Responsible: Prof. Dr.-Ing. Markus Uhlmann

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Profile Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Compulsory Modules B)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each summer term

Duration: 1 term

Language: English

Level: 4

Version: 2

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>T-BGU-106769</th>
<th>Parallel Programming Techniques for Engineering</th>
<th>3 CR</th>
<th>Uhlmann</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T-BGU-106768</td>
<td>Numerical Fluid Mechanics II</td>
<td>3 CR</td>
<td>Uhlmann</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-106768 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-106769 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
mODULE 'Numerical Fluid Mechanics (AF501)' must be completed

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-BGU-103375 - Numerical Fluid Mechanics must have been passed.

Competence Goal
Students are able to numerically solve simplified flow problems based upon the Navier-Stokes equations in an independent fashion. This involves the design of a solution method, the analysis of its properties (concerning stability, precision, computational effort), the algorithmic implementation, the validation with respect to appropriate test cases, and the final documentation of the results. Furthermore, participants of this course are enabled to judge techniques for the use of massively parallel computer systems to solve fluid mechanics problems as to their efficiency and applicability. They are capable of applying the appropriate parallel programming techniques to selected model problems.

Content
In the present module, advanced skills in the numerical solution of fluid mechanics problems are imparted, building upon the material of the course Numerical Fluid Mechanics I. Here, various numerical solution methods for the time-dependent Navier-Stokes equations in several spatial dimensions are demonstrated with the aid of practical examples. This includes the following aspects: coupling and decoupling of velocity and pressure fields in incompressible flows, numerical treatment of discontinuities (shock waves, hydraulic jumps), computation of scalar transport, numerical tracking of inertial particles, linear stability analysis.

The course Parallel Programming Techniques for Engineering Problems conveys the fundamental programming concepts for massively-parallel computer systems. First, the common parallel computer architectures and the most widely used programming paradigms are introduced. Then techniques for implementing standard algorithms of numerical fluid mechanics (and other disciplines involving field problems) are presented, analyzed and practiced with the aid of the Message Passing Interface (MPI) standard.

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
none
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Parallel Programming Techniques for Engineering Problems lecture, exercise: 30 h
- Numerical Fluid Mechanics II lecture, exercise: 30 h

independent study:

- preparation and follow-up lectures, exercises Parallel Programming Techniques for Engineering Problems: 30 h
- examination preparation Parallel Programming Techniques for Engineering Problems (partial exam): 30 h
- preparation and follow-up lectures, exercises Numerical Fluid Mechanics II: 30 h
- examination preparation Numerical Fluid Mechanics II (partial exam): 30 h

total: 180 h

Recommendation
Programing skills in at least one compiler language (C,C++, FORTRAN or equivalent)

Literature
T.G. Mattson, B.A. Sanders, B.L. Massingill "Patterns for Parallel Programming" Addison-Wesley, 2004.
4.38 Module: Fluid Mechanics of Turbulent Flows (WSEM-PB523) [M-BGU-105361]

Responsible: Prof. Dr.-Ing. Markus Uhlmann
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules) (Usage from 4/1/2020)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Profile Modules) (Usage from 4/1/2020)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules) (Usage from 4/1/2020)
- Profile Studies / Water Resources Engineering (Compulsory Modules B) (Usage from 4/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-110841 | Fluid Mechanics of Turbulent Flows | 6 CR | Uhlmann |

Competence Certificate
- ‘Teilleistung’ T-BGU-110841 with oral examination according to § 4 Par. 2 No. 2
- details about the learning control see at the ‘Teilleistung’

Prerequisites
none

Competence Goal
Participants are able to describe the characteristics of turbulent flows, and to quantify their effect upon the transport rates of momentum, heat and mass. They are aware of the problems associated with computationally determining turbulent flow quantities. With this knowledge, they are able to weigh the pros and cons of the different modeling approaches; they are further able to choose an appropriate approach for a given application.

Content
The mathematical description of the physics of turbulence is successively developed. The module presents the phenomenology of turbulent flows, introduces the statistical description of turbulent flow processes, discusses the characteristics of free and wall-bounded shear flows, and presents an analysis of the turbulent energy cascade.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h

independent study:
- preparation and follow-up lectures, exercises: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation
Basic fluid mechanics (experience in working with the Navier-Stokes equations)
Mathematics (analysis – partial differential equations, Fourier series, vectors/tensors, matrices and eigenvalues; statistics)
Knowledge in programming with Matlab is recommended; otherwise it is strongly recommended to participate in the course ‘Introduction to Matlab (CC772)’.
Module: Modeling of Turbulent Flows - RANS and LES (WSEM-PB524) [M-BGU-105362]

Responsible: Prof. Dr.-Ing. Markus Uhlmann
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules) (Usage from 4/1/2020)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Profile Modules) (Usage from 4/1/2020)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules) (Usage from 4/1/2020)
- Profile Studies / Water Resources Engineering (Compulsory Modules B) (Usage from 4/1/2020)

Credits 6
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language English
Level 4
Version 1

Mandatory
T-BGU-110842 Modeling of Turbulent Flows - RANS and LES 6 CR Uhlmann

Competence Certificate
- 'Teilleistung' T-BGU-110842 with oral examination according to § 4 Par. 2 No. 2
details about the learning control see at the 'Teilleistung'

Prerequisites none

Competence Goal
Participants are able to weigh the pros and cons of the different modeling approaches; they are further able to choose an appropriate approach for a given application. Participants have the ability to critically evaluate the expected outcome of a range of turbulence models with respect to their predictive capabilities and the required computational effort.

Content
In this module covers the required mathematical tools and the most useful modeling approaches for fluids engineering problems. First the statistical approach to turbulence modeling, based upon Reynolds averaging (RANS) is presented, starting with the simplest algebraic model and ranging up to Reynolds stress transport models. Furthermore, an introduction to the concept of large-eddy simulation (LES) is given.

Module grade calculation
Grade of the module is grade of the exam

Annotation none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Modeling of Turbulent Flows - RANS and LES lecture, exercise: 60 h

independent study:

- preparation and follow-up lectures, exercises Modeling of Turbulent Flows - RANS and LES: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation
Basic fluid mechanics (experience in working with the Navier-Stokes equations)
Mathematics (analysis – partial differential equations, Fourier series, vectors/tensors, matrices and eigenvalues; statistics)
Knowledge in programming with Matlab is recommended; otherwise it is strongly recommended to participate in the course 'Introduction to Matlab (CC772)'.

Taking the module Fluid Mechanics of Turbulent Flows [PB523] preliminarily is strongly recommended.
4.40 Module: Hydraulic Structures (WSEM-PB631) [M-BGU-103389]

Responsible:
Prof. Dr. Olivier Eiff

Organisation:
KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Profile Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Compulsory Modules B)

Credits
6

Grading scale
Grade to a tenth

Recurrence
Each term

Duration
2 terms

Language
English

Level
4

Version
3

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106774</td>
<td>Groundwater Flow around Structures</td>
<td>3 CR Trevisson</td>
</tr>
<tr>
<td>T-BGU-110404</td>
<td>Interaction Flow - Hydraulic Structures</td>
<td>3 CR Gebhardt</td>
</tr>
</tbody>
</table>

Competence Certificate
- ‘Teilleistung’ T-BGU-106774 with written examination according to § 4 Par. 2 No. 1
- ‘Teilleistung’ T-BGU-110404 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective ‘Teilleistung’

Prerequisites
none

Competence Goal
Students are able to analyze and calculate steady and unsteady flow forces on hydraulic structures. They can describe groundwater flow processes and derive flow parameters with common measurement calculations. Based on the acquired knowledge, they can analyze concepts for preventing groundwater-related structural damage in a critical manner. Students characterize and categorize flow-induced structural vibrations. They can apply their knowledge to application examples.

Content
In this module, the following topics are discussed in depth:

- potential theory
- groundwater flow
- structural adjustment to groundwater flow
- determination of hydrostatic and hydrodynamic flow forces
- overview of sealing mechanisms: flood sluices, weirs, gates
- flow-induced structural vibrations

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
IMPORTANT:
As from summer term 2024, Groundwater Flow around Structures is a written examination.

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Groundwater Flow around Structures lecture/exercise: 30 h
- Interaction Flow - Hydraulic Structures lecture/exercise: 30 h

independent study:

- preparation and follow-up lecture/exercises Groundwater Flow around Structures: 30 h
- examination preparation Groundwater Flow around Structures (partial exam): 30 h
- preparation and follow-up lecture/exercises Interaction Flow - Hydraulic Structures: 30 h
- examination preparation Interaction Flow - Hydraulic Structures (partial exam): 30 h

total: 180 h

Recommendation
none
Literature
C. Lang, lecture notes 'Interaktion Strömung - Wasserbauwerk'
4.41 Module: River Processes (WSEM-PB634) [M-BGU-105927]

Responsible: Prof. Dr. Mario Jorge Rodrigues Pereira da Franca
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules) (Usage from 4/1/2022)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Profile Modules) (Usage from 4/1/2022)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules) (Usage from 4/1/2022)
- Profile Studies / Water Resources Engineering (Compulsory Modules B) (Usage from 4/1/2022)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-111930 | River Processes | 6 CR Rodrigues Pereira da Franca |

Competence Certificate

- 'Teilleistung' T-BGU-111930 with examination of other type according to § 4 Par. 2 No. 3
- details about the learning control see at the 'Teilleistung'

Prerequisites

This module must not be selected together with the module Flow and Sediment Dynamics in Rivers [WSEM-PB633] not offered anymore.

Competence Goal

The module provides students with theoretical and practical knowledge of landscape and river processes, related to hydromorphodynamics and transported phases. The students will be able to transfer immature scientific knowledge into engineering praxis through the assignment and experimental analysis, which includes:

1. hypotheses formulation,
2. experimental data acquisition, and subsequent
3. analysis of data to support derivation of own findings.

The experimental work will be conducted in a large-scale research infrastructure of the Theodor Rehbock Hydraulics Laboratory at IWU.

After successfully completing the course on *Landscape and River Morphology*, the student will be able to:

- describe the main morphology processes happening at the landscape and river scale
- describe and identify the governing processes of singularities in the river networks such as confluences, bifurcations, bends, among others
- identify possible implications of climate change in morphological processes of the river basin
- identify the main hydromorphodynamic processes relevant to river ecology
- transfer immature knowledge from scientific literature into engineering praxis

After successfully completing the course on *Transport Processes in Rivers*, the student will be able to:

- describe the engineering and ecological implications of different types of moving elements (debris: plastic, wood, sediments) in rivers,
- identify relevant sources and sinks of debris transported by rivers,
- quantify transport processes relative to river debris,
- acquire and analyze hydrodynamic data to inform on a river transport process,
- derive new, own findings based on research-based methods,
- plan monitoring campaigns based on state-of-the-art techniques,
- transfer scientific literature in river debris into practical applications.
Content
The content of the module/course pursues the following UN Sustainable Goals:

- SDG 6 Clean water and sanitation

The course Landscape and River Morphology contains the following topics:

- morphology processes at the landscape scale,
- morphology processes at the river scale,
- intersection of hydromorphodynamic processes with engineering praxis,
- safety and stability of river networks,
- fluvial ecomorphology

The course Transport Processes in Rivers considers the following topics:

- sediment transport (bed and suspended load),
- plastic and urban (cars and urban furniture) debris,
- experimental analysis of transport/retention processes for sediments or debris such as
 - plastic, wood, etc.,
 - woody and vegetation debris,
 - bubbles and gas transfer,
 - heat,
 - contaminant plumes.

Module grade calculation
grade of the module is grade of the exam

Annotation
More information about the module can be found under https://wb.iwu.kit.edu/education.php.

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Landscape and River Morphology lecture/exercise: 30 h
- Transport Processes in Rivers lecture/exercise: 30 h

independent study:

- preparation and follow-up lecture/exercises Landscape and River Morphology: 10 h
- preparation of the assignment in Landscape and River Morphology: 30 h
- preparation and follow-up lecture/exercises Transport Processes in Rivers: 10 h
- experimental work in Transport Processes in Rivers and preparation of report: 50 h
- preparation of final colloquium: 20 h

total: 180 h

Recommendation
basic knowledge in hydromechanics and hydraulic engineering

Literature
4.42 Module: Experimental Hydraulics and Measurement Techniques (WSEM-PB642) [M-BGU-106114]

Responsible: Dr.-Ing. Frank Seidel
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules) (Usage from 10/1/2022)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Profile Modules) (Usage from 10/1/2022)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules) (Usage from 10/1/2022)
- Profile Studies / Water Resources Engineering (Compulsory Modules B) (Usage from 10/1/2022)

Credits 6
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language English
Level 4
Version 1

Mandatory
<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-112374</td>
<td>Experimental Hydraulics</td>
<td>3 CR Seidel</td>
<td></td>
</tr>
<tr>
<td>T-BGU-110411</td>
<td>Flow Measurement Techniques</td>
<td>3 CR Gromke</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-112374 with examination of other type according to § 4 Par. 2 No. 3
- 'Teilleistung' T-BGU-110411 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
The module must not be selected together with the module Experimental Hydraulics and Measuring Techniques (WSEM-PB641) not offered anymore.

Competence Goal
Students are able to describe the principles of different flow measurement methods and combine this information with the basics of today's flow measurement technology. They have basic knowledge about the structure and can analyze the suitability of measurement methods and set application boundaries. Students have basic knowledge about experimentation in hydraulics. They know the similarity mechanical requirements and assign them to the hydromechanical basics. Students are able to analyze applications in the field of multiphase hydraulics and select suitable model concepts. They can present their own thoughts and ideas in a structured manner and discuss the themes with specialists.

Content
In this module, the following topics will be discussed in depth:

- basic equations in fluid mechanics
- measurement methods and their fields of application
- experimental models with movable beds
- experiments related to multiphase flow problems (water-air, water-solid)

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
Further information about the module can be found under https://wb.iwu.kit.edu/education.php.

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Flow Measurement Techniques lecture/exercise: 30 h
- Experimental Hydraulics lecture/exercise: 30 h

independent study:

- preparation and follow-up lecture/exercises Flow Measurement Techniques: 30 h
- examination preparation Flow Measurement Techniques (partial exam): 30 h
- preparation and follow-up lecture/exercises Experimental Hydraulics: 30 h
- preparation of term paper Experimental Hydraulics (partial exam): 30 h

total: 180 h
Recommendation
module 'Experiments in Fluid Mechanics (WSEM-CC471)', hydraulic lab practice
Module: Numerical Flow Modeling in Hydraulic Engineering (WSEM-PB651) [M-BGU-103390]

Responsibility: Dr.-Ing. Peter Oberle

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Profile Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Compulsory Modules B)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-106776 | Numerical Flow Modeling in Hydraulic Engineering | 6 CR | Oberle |

Competence Certificate

- 'Teilleistung' T-BGU-106776 with oral examination according to § 4 Par. 2 No. 2
- details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

see German version

Content

see German version

Module grade calculation

grade of the module is grade of the exam

Annotation

Further information on the course/module can be found at: https://wb.iwu.kit.edu/education.php.

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise: 60 h

independent study:

- preparation and follow-up lectures, exercises: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation

basic knowledge of hydrology, hydraulic engineering and water management as well as open channel hydraulics

Literature

lecture notes
Module: Hydro Power Engineering (WSEM-PB653) [M-BGU-100103]

Responsible: Dr.-Ing. Peter Oberle
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Profile Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Compulsory Modules B)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-100139 | Hydro Power Engineering | 6 CR | Oberle |

Competence Certificate

- 'Teilleistung' T-BGU-100139 with oral examination according to § 4 Par. 2 No. 2

details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

Students are able to describe the different turbine types and can define selection criteria for their usage. They are able to reproduce the basic approaches in the planning and design of hydropower plants and to make own calculations to select turbines. They can select and apply the necessary tools in a methodical matter. Students are able to discuss the current political conditions in terms of energy policy with other students and support their personal opinion on these issues with technical arguments.

Content

The course explains the technical background for planning and designing waterpower plants. Among others, it covers the constructional characteristics of river and high-pressure power plants, the operating modes and selection criteria of different types of turbines as well as electro-technical aspects of the plants' operation. In addition, ecological aspects and energy policy are considered as frame conditions. The lecture sessions are complemented by the presentation of current projects and excursions.

The content of the module/course pursue the following UN Sustainable Goals:

- SDG 6 Clean Water and Sanitation
- SDG 7 Affordable and Clean Energy

Module grade calculation

grade of the module is grade of the exam

Annotation

Further information on the course/module can be found at: https://wb.iwu.kit.edu/education.php.

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise: 60 h

independent study:

- preparation and follow-up lectures, exercises: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation

course Hydraulic Engineering and Water Management (6200511)

Literature

Folienumdrucke;
Module: Waterway Engineering (WSEM-PB655) [M-BGU-103392]

Responsible: Dr.-Ing. Andreas Kron

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Profile Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Compulsory Modules B)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106779</td>
<td>Seminar Paper 'Waterway Engineering'</td>
<td>1 CR</td>
<td>Kron</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-106780</td>
<td>Waterway Engineering</td>
<td>5 CR</td>
<td>Kron</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-106779 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-106780 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites

none

Competence Goal

Students are knowledgeable about the various types of navigable waterways and their hydraulic structures. They are able to describe and apply the hydraulic basics for the design of these hydraulic structures and the interaction between ship and waterway. Students can assign the tasks and responsibilities of waterway engineering to the administrative structure of the waterways and shipping.

Content

Inland shipping is an important mode of transport, accounting for around 20% of inland freight transport. Around 230 million tonnes of goods are transported annually over a total length of around 7,300 km. Thanks to its high capacity and low energy requirements, inland shipping contributes to reducing transport emissions compared to other means of transport. In order to be able to secure the transport performance of inland shipping in the long term, a large number of aspects of water transport engineering must be taken into account, which will be discussed in the lecture. In addition to the necessary structural facilities, economic and ecological aspects of inland shipping are also addressed.

The contents of the module/course pursue the following UN Sustainable Goals:

- SDG 7 Affordable and Clean Energy
- SDG 9 Industry, Innovation and Infrastructure
- SDG 13 Climate Action

Module grade calculation

grade of the module is grade of the exam

Annotation

Further information on the course/module can be found at: https://wb.iwu.kit.edu/education.php.

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lectures/exercises: 30 h
- preparation of the seminar paper (exam prerequisite): 30 h
- examination preparation: 60 h

total: 180 h

Recommendation

course Hydraulic Engineering and Water Management (6200511)
Module: Project Studies in Water Resources Management (WSEM-PB661) [M-BGU-103394]

Responsible: Dr.-Ing. Frank Seidel

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Profile Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Compulsory Modules B)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

Competence Certificate

- 'Teilleistung' T-BGU-106783 with examination of other type according to § 4 Par. 2 No. 3

Details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

see German version

Content

see German version

Module grade calculation

grade of the module is grade of the exam

Annotation

Further information on the course/module can be found at: https://wb.iwu.kit.edu/education.php.

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise: 30 h

independent study:

- preparation and follow-up lectures, exercises: 30 h
- preparation of term paper (exam): 120 h

total: 180 h

Recommendation

module 'River Processes (PB634)'
Module: River Basin Modeling (WSEM-PC341) [M-BGU-103373]

Responsible: PD Dr.-Ing. Stephan Fuchs

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Profile Modules)
- Profile Studies / Water Resources Engineering (Compulsory Modules C)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each summer term

Duration: 2 terms

Language: English

Level: 4

Version: 2

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-111061</td>
<td>Mass Fluxes in River Basins</td>
<td>3 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-106603</td>
<td>River Basin Modeling</td>
<td>3 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-111061 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-106603 with examination of other type according to § 4 Par. 2 No. 3

Details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students are able to explain the basic relationships between water-driven material cycles in river basins and their budget in aquatic ecosystems. They are able to analyze the impact of anthropogenic activities on water condition and quality. Students gain knowledge regarding transport pathways of substances and biochemical and physical interactions in water bodies in order to formulate mathematical model approaches. Using simulation models, they are able to quantify substance emissions; to predict the impact from external influences on the water quality relevant processes and; to perform different scenario analysis. Students are capable of evaluating model results in terms of their plausibility and uncertainty.

Content
This module provides students with a broad-based understanding of the fundamentals of materials flows (N, P, pollutants) and their relevant transport pathways in river basins. Different modeling approaches for a quantitative description of the processes will be presented. Students receive a single-user version of the simulation tool MoRE (Modeling of Regionalized Emissions). They have to develop and implement their own model in small groups and interpret simulation results.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Mass Fluxes in River Basins lecture: 30 h
- Modeling Mass Fluxes in River Basins exercise: 30 h

Independent study:
- preparation and follow-up lectures Mass Fluxes in River Basins: 30 h
- working on exercises and final presentation Mass Fluxes in River Basins (examination prerequisite): 30 h
- project work on River Basin Modeling (examination): 60 h

Total: 180 h

Recommendation
modules 'Urban Water Infrastructure and Management (AF301)', 'Freshwater Ecology (CC371)';
beginning the module in summer term
Literature
4.48 Module: Groundwater Management (WSEM-PC561) [M-BGU-100340]

Responsible: Dr. Ulf Mohrlok

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Profile Modules)
- Profile Studies / Water Resources Engineering (Compulsory Modules C)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>2 terms</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100624</td>
<td>Groundwater Hydraulics</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-BGU-100625</td>
<td>Numerical Groundwater Modeling</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100624 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-100625 with examination of other type according to § 4 Par. 2 No. 3

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
Based on the understanding of hydrogeological settings and fluid-mechanical processes in the subsurface students can characterize different kinds of groundwater systems by means of hydraulics. They can quantify the relevant flow and transport processes with simple analytical and numerical methods for different problems regarding groundwater quantity and quality. Thereby, they are able to conceive and evaluate the relations important for the management of groundwater resources.

Content
- groundwater systems
- fluid-mechanical processes in porous media
- methods of balancing groundwater flow and solute transport processes
- examples of groundwater management
- project work

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Groundwater Hydraulics lecture/exercise: 30 h
- Numerical Groundwater Modeling presentations/project discussions: 15 h

independent study:
- preparation and follow-up lecture/exercises, working on exercises Groundwater Hydraulics: 40 h
- examination preparation Groundwater Hydraulics (partial exam): 20 h
- project work Numerical Groundwater Modeling, incl. presentation and preparation of the report (partial exam): 80 h

total: 185 h

Recommendation
- basic knowledge in fluid mechanics, hydrology, solute transport and numerical methods;
- beginning the module in summer term
Literature
4.49 Module: Integrated Design Project in Water Resources Management (WSEM-PC722) [M-BGU-105637]

Responsible: PD Dr.-Ing. Uwe Ehret
Dr.-Ing. Frank Seidel

Organisation:
KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules) (Usage from 4/1/2021)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (Usage from 4/1/2021)
Profile Studies / Environmental System Dynamics & Management (Profile Modules) (Usage from 4/1/2021)
Profile Studies / Water Resources Engineering (Compulsory Modules C) (Usage from 4/1/2021)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-111275</td>
<td>Integrated Design Project in Water Resources Management</td>
<td>6 CR</td>
<td>4</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-111275 with written examination of other type according to § 4 Par. 2 No. 3
 details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students are able to independently undergo the basic steps of planning and design in water resources management. They can identify engineering problems and apply the respective design approaches.
Students are able to work in a self-organized and reflexive manner. They are able to use and link their knowledge logically and have organizational skills in the areas of teamwork and presentation.

Content
In this module, students will work in teams to independently plan and design a flood protection measure for a small catchment. This comprises:

- identifying the legally required flood protection level
- establishing and comparing possible flood protection strategies
- setting up a hydrological model for the project catchment
- establishing hydrological design values based on design storms applied to the hydrological model, and designing flood values from extreme value statistics
- designing the outlet works and the flood release system of a flood retention basin based on the hydrological flood values with a special focus in capacity and energy dissipation.

In the lectures, the following topics required to successfully accomplish the design project will be covered:

- basic introduction to Water Resources Management
- basic planning methodology in water management projects
- basic hydrological modeling
- introduction to extreme-value statistics and design storms
- introduction to the related design standards and legal requirements (DIN 19700 and others)
- introduction to the design of hydraulic structures with a special focus on flood retention basins
- principals of Computer Aided Design (AutoCAD)
- background on operation and maintenance of flood retention basins
- practical example: excursion to a build flood retention basin

Module grade calculation
grade of the module is grade of the exam

Annotation
none
Workload

Contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 30 h

Independent study:

- preparation and follow-up lecture/exercises: 30 h
- preparation of the study project and the report (examination): 120 h

Total: 180 h

Recommendation

Basic knowledge in hydrology, hydrological modeling, hydromechanics, hydraulic engineering

Matlab skills (for hydrological modeling), e.g. successful completion of Introduction to Matlab (WSE-CC772)
4.50 Module: Subsurface Flow and Contaminant Transport (WSEM-PC725) [M-BGU-103872]

Responsible: Prof. Dr.-Ing. Erwin Zehe
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules) (Usage from 4/1/2019)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (Usage from 4/1/2019)
- Profile Studies / Environmental System Dynamics & Management (Profile Modules) (Usage from 4/1/2019)
- Profile Studies / Water Resources Engineering (Compulsory Modules C) (Usage from 4/1/2019)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory
T-BGU-106598 Transport and Transformation of Contaminants in Hydrological Systems 6 CR Zehe

Competence Certificate
- 'Teilleistung' T-BGU-106598 with oral examination according to § 4 Par. 2 No. 2
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students are able to explain processes of transport and decomposition related to nutrients and pollutants in surface runoff and in the unsaturated zone of rural catchments.

Students are able to independently apply analytical and process-based models: estimation of model parameters from field investigations, estimation of water and substance fluxes and balance in the critical zone, statements on the risks related to contaminant mobilization in natural soils.

Students are able to evaluate the limits of applicability of modeling approaches in natural, heterogeneous soils.

Content
Transport processes in the unsaturated zone related to infiltration, surface runoff, and movement of soil water:

- advective-dispersive transport in homogeneous and heterogeneous soils
- particulate transport by erosion
- adsorption
- chemical and microbial processes of reaction and decay in soils
- modeling contaminant transport (e.g. pesticides) in soils using analytical models
- risk assessment for pesticides in soils (transport, residence times, adsorption, decay)
- estimation of model parameters from field exploration
- parameterization of adsorption isotherms
- breakthrough curve

Computer exercise:

- simulation of water and substance transport with process-based models
- independently conducted risk-assessments for pesticides using simple simulation techniques

Module grade calculation
grade of the module is grade of the exam

Annotation
none
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation
modules Water and Energy Cycles [WSEM-AF701] and Hydrological Measurements in Environmental Systems [WSEM-PC732]; knowledge of programming with Matlab; otherwise, it is strongly recommended to attend the course 'Introduction to Matlab' (6224907)

Literature
Module: Hydrological Measurements in Environmental Systems (WSEM-PC732) [M-BGU-103763]

Responsible: Dr. Jan Wienhöfer

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules) (Usage from 4/1/2019)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (Usage from 4/1/2019)
- Profile Studies / Environmental System Dynamics & Management (Profile Modules) (Usage from 4/1/2019)
- Profile Studies / Water Resources Engineering (Compulsory Modules C) (Usage from 4/1/2019)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each summer term

Duration: 1 term

Language: English

Level: 4

Version: 1

Mandatory

| T-BGU-106599 | Hydrological Measurements in Environmental Systems | 6 CR | Wienhöfer |

Competence Certificate

- 'Teilleistung' T-BGU-106599 with examination of other type according to § 4 Par. 2 No. 3
- details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

Students know and understand measurement principles for catchment properties, catchment states, and water fluxes. They are able to independently plan and conduct measurements on various scales (soil column, plot, hillslope, catchment) in the field and the laboratory. Students can analyze observation data with statistical methods, and are able to quantify and evaluate the related uncertainties. Students are able to present the related results in teamwork.

Content

- introduction to environmental observations (scales, uncertainties), statistical data analysis and error analysis
- seminar on hydrological measurement devices in field and laboratory: Discharge, soil moisture, infiltration, hydraulic conductivity
- lab and field work (several days) where students conduct hydrological measurements

Module grade calculation

grade of the module is grade of the exam

Annotation

The course requires a minimum number of 6 and a maximum number of 30 participants. Please register online for the course (not exam!), 6224807, via the Campus portal (in exceptional cases via e-mail to the responsible lecturer). Participants are selected according to their progress of study considering the following order: students of Water Science and Engineering, students of Civil Engineering, students of Geocology.

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- laboratory and field exercise: 70 h

independent study:

- preparation and follow-up laboratory and field exercises: 10 h
- preparation of presentations and reports (exam): 100 h

total: 180 h

Recommendation

knowledge in hydrology

Literature

notes for field exercises

Water Science and Engineering (Master of Science (M.Sc.), ER/SPO 2016)
Module Handbook as of 19/03/2024

96
Module: Deep Learning in Hydrological Modeling (WSEM-PC733) [M-BGU-105994]

Responsible: Dr. rer. nat. Ralf Loritz
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules) (Usage from 10/1/2022)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (Usage from 10/1/2022)
- Profile Studies / Environmental System Dynamics & Management (Profile Modules) (Usage from 10/1/2022)
- Profile Studies / Water Resources Engineering (Compulsory Modules C) (Usage from 10/1/2022)

Mandatory
Credits	6
Grading scale	Grade to a tenth
Recurrence	Each summer term
Duration	1 term
Language	English
Level	4
Version	1

Competence Certificate
- 'Teilleistung' T-BGU-112171 with examination of other type according to § 4 Par. 2 No. 3
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students have gained a general understanding how machine learning methods, particular artificial neural networks and derivatives, are applied in hydrology and have an overview of the current research in this field. They are able to independently setup different types of artificial neural networks in Python and do understand the core principles of these approaches. This includes that they are able to analyze these neural networks and understand their key limitations. The overall goal is that they are prepared to apply state of the art machine learning methods in the water sciences.

Content
This module is designed to deepen the understanding how machine learning is applied in hydrology. This is done along hands-on examples in combination with state of the art machine learning literature. The content is designed to strengthen the programming and scientific skills of the participating students. Topics of the class are:

- machine learning models as surrogate of environmental models with a focus on hydrological modeling
- basic concepts behind artificial neural networks and derivatives
- promises and key limitations of artificial neural network
- hybrid modelling: ideas, concepts and state of the art
- how to setup, design and validate artificial neural networks with hands-on examples in Python
- how to present scientific results in presentations and in a written form

Module grade calculation
grade of the module is grade of the exam

Annotation
The course is limited to 12 participants. Please register via e-mail to the responsible lecturer. Participants are selected according to their progress of study considering the following order: students of Water Science and Engineering, that have successful participated in 'Introduction to Environmental Data Analysis and Statistical Learning' and 'Water and Energy Cycles', then students of Civil Engineering with focus Water and Environment, then other students.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture/exercise: 60 h

independent study:
- preparation and follow-up lecture/exercises: 20 h
- preparation of presentation: 40 h
- preparation of report: 60 h

total: 180 h
Recommendation
sound knowledge in basics of hydrology;
interest in reading and reviewing scientific research papers;
good programming skills in Python, MatLab or R, preferably in Python.
successful participation in Introduction to Environmental Data Analysis and Statistical Learning (WSEM-CC774) and Water and Energy Cycles (WSEM-AF701)
Module: Protection and Use of Riverine Systems (WSEM-PC762) [M-BGU-103401]

Responsible: Dr. rer. nat. Charlotte Kämpf

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Profile Modules)
- Profile Studies / Water Resources Engineering (Compulsory Modules C)

Credits 6

Grading scale Grade to a tenth

Recurrence Each summer term

Duration 1 term

Language English

Level 4

Version 1

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Prerequisite Protection and Use of Riverine Systems</th>
<th>1 CR</th>
<th>Kämpf</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106790</td>
<td>Protection and Use of Riverine Systems</td>
<td>5 CR</td>
<td>Kämpf</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-106790 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-106791 with examination of other type according to § 4 Par. 2 No. 3

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
Students are able to rank interdisciplinary texts on riverine systems according to their relevance, and formulate relevant questions on this topic. Students can research systematically on a scientific problem. They are able to put the materials in the context of integrated management strategies and current water resources problems to work on solutions for adapting to regional conditions.

Content

Integrated Water Management:
- planning of water management projects
- adapted technologies (small hydropower systems)
- water distribution networks
- consideration of the geographical, social and political environment

International Nature Conservation:
- FFH Directive, Natura 2000, wildlife conservation concepts
- renaturation concepts

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- seminar, excursion: 50 h

independent study:
- preparation and follow-up seminar, excursion: 40 h
- preparation of literature annotation, short presentation and excursion report (examination prerequisite): 30 Std.
- preparation of presentation and manuscript (examination): 60 Std.

total: 180 h
Recommendation

none
Module: Karst Hydrogeology (WSEM-PC842) [M-BGU-105790]

Responsible: Prof. Dr. Nico Goldscheider

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules) (Usage from 10/1/2022)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (Usage from 10/1/2022)
- Profile Studies / Environmental System Dynamics & Management (Profile Modules) (Usage from 10/1/2022)
- Profile Studies / Water Resources Engineering (Compulsory Modules C) (Usage from 10/1/2022)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each winter term

Duration: 2 terms

Language: German

Level: 4

Version: 2

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-111592</td>
<td>Karst Hydrogeology</td>
<td>4 CR</td>
<td>Goldscheider</td>
</tr>
<tr>
<td>T-BGU-110413</td>
<td>Field Trip Karst Hydrogeology</td>
<td>2 CR</td>
<td>Goldscheider</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-110413 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-111592 with written examination according to § 4 Par. 2 No. 1

Details about the learning controls see at the respective 'Teilleistung'

Prerequisites

none

Competence Goal

- The students are able to understand and explain the hydrogeological characteristics of karst aquifer systems and recognize them in the field.
- They are familiar with the relevant investigation methods in karst hydrogeology for scientific research and professional practice.
- They can evaluate the vulnerability of karst groundwater resources and develop concepts for their sustainable management.

Content

- Geomorphology and hydrology of karst landscapes
- Mineralogy, stratigraphy and geologic structure of karst systems
- The carbonate equilibrium, calcite dissolution, karstification and speleogenesis
- Groundwater flow in karst aquifers
- Modeling approaches in karst hydrogeology
- Vulnerability and contaminant transport in karst
- Springs, wells and other drinking water abstraction structures in karst aquifers
- Field exercises in karst hydrogeology: Impact of climate change on karst groundwater resources, drinking water abstraction in karst areas

Module grade calculation

grade of module is grade of the exam

Annotation

The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h
- field exercise: 30 h

independent study:

- preparation and follow-up lectures/exercises: 30 h
- report on field exercise (not graded accomplishment): 30 h
- examination preparation: 30 h

total: 180 h

Recommendation
none
4.55 Module: Sustainable Management of rivers and Floodplains (WSEM-PC986)
[M-BGU-103391]

Responsible: Prof. Dr. Florian Wittmann
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Profile Modules)
- Profile Studies / Water Resources Engineering (Compulsory Modules C)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-102997</td>
<td>River and Floodplain Ecology</td>
<td>3 CR</td>
<td>Wittmann</td>
</tr>
<tr>
<td>T-BGU-112845</td>
<td>Wetlands</td>
<td>3 CR</td>
<td>Damm, Wittmann</td>
</tr>
</tbody>
</table>

Competence Certificate

- ‘Teilleistung’ T-BGU-102997 with not graded accomplishment according § 4 Par. 3
- ‘Teilleistung’ T-BGU-112845 with examination of other type according § 4 Par. 2 No. 3

Details about the learning controls see at the respective ‘Teilleistung’

Prerequisites

None

Module grade calculation

Grade of the module is grade of the exam

Annotation

None

Workload

Contact hours (1 HpW = 1 h x 15 weeks):

- Ecology of Rivers and Wetlands lecture: 30 h
- Wetlands seminar: 30 h

Independent study:

- preparation and follow-up lectures Ecology of Rivers and Wetlands: 30 h
- preparation test Ecology of Rivers and Wetlands (not graded accomplishment): 30 h
- preparation and follow-up lectures Wetlands: 30 h
- preparation of presentation Wetlands (examination): 30 h

Total: 180 h

Recommendation

Start in winter term with course ‘Ecology of Rivers and Wetlands’
Module: Module Master's Thesis (WSE-MSC-THESIS) [M-BGU-104995]

Responsible: Studiendekan:in der KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: Master's Thesis (Usage from 7/1/2019)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-BGU-110134</th>
<th>Master's Thesis</th>
<th>30 CR</th>
</tr>
</thead>
</table>

Competence Certificate

thesis and final presentation according to § 14 ER/SPO

Prerequisites

Prerequisite for the admission to the Master Thesis is that the student has passed module examinations in the extent of minimum 42 CP. The examination board decides about exceptions on request of the student (ER/SPO § 14 Par. 1).

Competence Goal

The student is able to investigate independently a complex problem within a particular research field of his choice in limited time, following scientific methods. He can search autonomously for literature, can find own approaches, can evaluate his results and can classify them according to the state of the art. He is further able to present clearly the essential matter and results in his master thesis and in a comprehensive presentation.

Content

The Master Thesis is an independent written report and comprises the theoretical or experimental work on a complex problem within a particular field of civil engineering with scientific methods. The topic of the master thesis derives from the students choice of a particular field. The student and can make proposals for the topic.

Module grade calculation

The grade of the module results from the evaluation of the Master Thesis and the final presentation.

Annotation

Information about the procedure regarding admission and registration of the Master Thesis see chap. 1.2.5.

Workload

- working on thesis project: 720 h
- thesis writing: 150 h.
- preparation of presentation: 30 h

total: 900 h

Recommendation

All technical skills and soft skills required for working on the selected topic and the preparation of the thesis should be attained.
4.57 Module: Thermal Use of Groundwater (WSEM-SM879) [M-BGU-103408]

Responsible: Prof. Dr. Philipp Blum

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
Profile Studies / Water Resources Engineering (Supplementary Modules)

Credits
4

Grading scale
Grade to a tenth

Recurrence
Each winter term

Duration
1 term

Language
English

Level
4

Version
2

Mandatory

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Thermal Use of Groundwater</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106803</td>
<td>4 CR Blum</td>
</tr>
</tbody>
</table>

Competence Certificate

- ‘Teilleistung’ T-BGU-106803 with oral examination according to § 4 Par. 2 No. 2

details about the learning control see at the ‘Teilleistung’

Prerequisites

none

Competence Goal

Students get familiar with the topic ‘Thermal Use of Groundwater’ and will be able to integrate their knowledge in particular in an urban water energy nexus. They get knowledge about the fundamentals of thermal transport in groundwater and their application to shallow geothermal systems such as ground source and groundwater heat pump systems. Hence, analytical and numerical simulations will be performed using Excel and Matlab scripted codes. They will be able to perform their own simulations and will be able to design shallow geothermal systems in context of the water energy nexus.

Content

The content of this module is mainly based on the textbook on ‘Thermal Use of Shallow Groundwater’ and is therefore structured as follows:
- Fundamentals (theory of heat transport in the subsurface)
- Analytical solutions for closed and open systems
- Numerical solutions for shallow geothermal systems
- Long-term operability and sustainability
- Field methods such as thermal tracer tests and thermal response tests (TRT)
- Case studies and applications

Analytical simulations are performed using Excel and Matlab scripted codes. In addition, calibration and validation exercises are performed using existing field and monitoring data. Finally, the students are actively planning an own geothermal system from the application up to the long-term performance of such a system. Hence, a final planning report should be written.

Module grade calculation

grade of the module is grade of the exam

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 30 h

independent study:

- preparation and follow-up lecture/exercises: 40 h
- examination preparation: 50 h

total: 120 h

Recommendation

knowledge of programming with Matlab; otherwise, it is strongly recommended to attend the course ‘Introduction to Matlab’ (6224907)

Literature

Other documents such as recent publications are made available on ILIAS.
Module: Earthwork and Embankment Dams (WSEM-SM961) [M-BGU-103402]

Responsible: Dr.-Ing. Andreas Bieberstein

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
Profile Studies / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106792</td>
<td>Earthwork and Embankment Dams</td>
<td>6 CR</td>
<td>Bieberstein</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-106792 with oral examination according to § 4 Par. 2 No. 2
- Details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
see German version

Content
see German version

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Basics in Earthworks and Embankment Dams lecture/exercise: 30 Std.
- Embankment Dams (Advanced) lecture/exercise: 30 Std.

independent study:
- preparation and follow-up lecture/exercises Basics in Earthworks and Embankment Dams: 30 h
- preparation and follow-up lecture/exercises Embankment Dams (Advanced): 30 h
- examination preparation: 60 h

total: 180 h

Recommendation
none
Module: Environmental Geotechnics (WSEM-SM962) [M-BGU-100079]

Responsible: Dr.-Ing. Andreas Bieberstein

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
Profile Studies / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
- **T-BGU-100084** Landfills
 - 3 CR Bieberstein
- **T-BGU-100089** Brownfield Sites - Investigation, Evaluation, Rehabilitation
 - 3 CR Bieberstein

Competence Certificate
- 'Teilleistung' T-BGU-100084 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-100089 with oral examination according to § 4 Par. 2 No. 2

details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students can describe the legal guidelines regarding the disposal of wastes and the permitted threshold value for brownfields. They can outline the geotechnical concerns in the construction of landfill sites depending on the particular landfill classification, landfill elements, their relevant requirements and necessary certifications. They are able to interlink interdisciplinarily the chemical, mineralogical, biological, hydraulic and geotechnical aspects dealing with brownfields. They can choose reasonably between the relevant remediation technologies and assess their limits of applications and risks.

Content
The module covers geotechnical techniques in dealing with waste and brownfields. The environmental engineering, scientific and legal basics are discussed. Working steps of project planning, building materials, ways of construction and proofs are presented. Techniques for burning and immobilisation are explained as well as different microbiological, electrokinetic, hydraulic and pneumatic soil remediation methods.

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Landfills lecture/exercise: 30 h
- Brownfield Sites - Investigation, Evaluation, Rehabilitation lecture: 30 h
- Excursion: 10 h

independent study:

- preparation and follow-up lecture/exercises Landfills: 25 h
- examination preparation Landfills (partial exam): 30 h
- preparation and follow-up lectures Brownfield Sites - Investigation, Evaluation, Rehabilitation: 25 h
- examination preparation Brownfield Sites - Investigation, Evaluation, Rehabilitation (partial exam): 30 h

total: 180 h

Recommendation
none
Literature
DGGT, GDA-Empfehlungen – Geotechnik der Deponien und Altlasten, Ernst und Sohn, Berlin
Drescher (1997), Deponiebau, Ernst und Sohn, Berlin
Reiersloh, D und Reinhard, M. (2010): Altlastenratgeber für die Praxis, Vulkan-V. Essen
Module: General Meteorology (WSEM-SM971) [M-PHYS-103732]

Responsible: apl. Prof. Dr. Michael Kunz

Organisation: KIT Department of Physics

Part of:
- Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules)
- Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules)
- Profile Studies / Environmental System Dynamics & Management (Supplementary Modules)
- Profile Studies / Water Resources Engineering (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-101091</td>
<td>General Meteorology</td>
<td>6 CR</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-PHYS-101091 with not graded accomplishment according to § 4 Par. 3

**details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

Students will be able to describe basic phenomena of meteorology using adequate terminology and explain them with the help of the underlying physical processes.

Content

This lecture is designed to introduce students to the fundamental aspects of meteorology. In addition to the fundamental physical laws of the atmosphere (radiation, thermodynamics, energetics), the composition of air, basic meteorological variables, air motions, and phase transitions of water will be covered:

1. Introduction and Overview: Atmosphere, weather and climate
2. Composition of air
3. Important meteorological variables and state variables.
4. Weather elements, weather observations, and introduction to synoptic meteorology.
5. Structure of the atmosphere and basic laws
6. Radiation
7. Thermodynamic fundamentals: state variables and vertical motions
8. Condensation processes and precipitation formation
9. Dynamical fundamentals: motions and simplified balances

Module grade calculation

not graded

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise: 75 h

independent study:

- preparation and follow-up lectures, exercises: 55 h
- preparation of the exercise to present: 20 h
- test preparation: 30 h

Recommendation

none
4.61 Module: Applied Meteorology: Turbulent Diffusion (WSEM-SM974) [M-PHYS-105776]

Responsible: Prof. Dr. Corinna Hoose
Dr. Gholamali Hoshyaripour

Organisation: KIT Department of Physics

Part of:
Profile Studies / Water Technologies & Urban Water Cycle (Supplementary Modules) (Usage from 10/1/2021)
Profile Studies / Fluid Mechanics & Hydraulic Engineering (Supplementary Modules) (Usage from 10/1/2021)
Profile Studies / Environmental System Dynamics & Management (Supplementary Modules) (Usage from 10/1/2021)
Profile Studies / Water Resources Engineering (Supplementary Modules) (Usage from 10/1/2021)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109981</td>
<td>Examination on Turbulent Diffusion</td>
<td>3 CR Hoose, Hoshyaripour</td>
</tr>
<tr>
<td>T-PHYS-111427</td>
<td>Turbulent Diffusion</td>
<td>3 CR Hoshyaripour</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-PHYS-111427 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-PHYS-109981 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites

none

Competence Goal

Students will be able to explain essential aspects of the dispersion of air pollutants in a professional manner. They are able to describe the underlying processes qualitatively and quantitatively and to derive effects from weather information.

Content

Dispersion of air impurities:

- relevant trace gases
- diurnal variation of emissions and concentrations
- temperature profile and motion processes in the lower atmosphere
- turbulent diffusion
- turbulence parameterization
- chemical transformation processes
- numerical models

Module grade calculation

grade of the module is grade of the exam

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lectures, exercise: 45 h

independent study:

- preparation and follow-up lectures, exercises Turbulent Diffusion, incl. working on a simulation (examination prerequisite): 105 h
- examination preparation: 30 h

total: 180 h

Recommendation

basic knowledge in meteorology, e.g. module ‘General Meteorology (SM971)’
4.62 Module: Study Project (WSEM-SP111) [M-BGU-103439]

Responsible: Dr.-Ing. Michele Trevisson
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: Study Project

<table>
<thead>
<tr>
<th>Credits</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading scale</td>
<td>Grade to a tenth</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each term</td>
</tr>
<tr>
<td>Duration</td>
<td>1 term</td>
</tr>
<tr>
<td>Language</td>
<td>German/English</td>
</tr>
<tr>
<td>Level</td>
<td>4</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-BGU-106839 Study Project 15 CR Trevisson

Competence Certificate
- 'Teilleistung' T-BGU-106839 with examination of other type according to § 4 Par. 2 No. 3
- details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students are able to work on an interdisciplinary, water-related project using scientific methods. They can, with guidance, plan, structure, prepare, conduct, and document a study. They are able to select appropriate methods for the solution of the given problem.
Students are able to work self-organized and structured. They possess skills in the field of project management, teamwork and presentation, both orally and in writing.

Content
Conducting a water-related, interdisciplinary project work. This may be of a theoretical and/or experimental type. The focus is on the development of conclusions using scientific methods, project management and presentation of the results.
The project can also be worked on in student teams. In this case, each student works on a particular aspect of an overall problem as part of a joint project.
Students are invited to make suggestions for topics.
It is possible to conduct the project in cooperation with external partners.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
processing time appr. 3 months

Recommendation
The knowledge and technical and interdisciplinary skills needed to work on the selected topic and to prepare the 'Study Project' should have been acquired.
4.63 Module: Supplementary Studies on Culture and Society [M-ZAK-106235]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation: Part of: Additional Examinations (Usage from 4/1/2023)

Credits 22
Grading scale Grade to a tenth
Recurrence Each term
Duration 3 terms
Language German
Level 4
Version 1

Election notes
With the exception of the final oral exam and the practice module, students have to self-record the achievements obtained in the Supplementary Studies on Culture and Society in their study plan. ZAK records the achievements as "non-assigned" under "ÜQ/SQ-Leistungen". Further instructions on self-recording of achievements can be found in the FAQ at https://campus.studium.kit.edu/ and on the ZAK homepage at https://www.zak.kit.edu/begleitstudium-bak.php. The title of the examination and the amount of credits override the modules placeholders.

If you want to use ZAK achievements both for your interdisciplinary qualifications and for the supplementary studies, please record them in the interdisciplinary qualifications first. You can then get in contact with the ZAK study services (stg@zak.kit.edu) to also record them in your supplementary studies.

In the in-depth module, achievements have to be obtained in three different areas. The areas are as follows:

- Technology & Responsibility
- Doing Culture
- Media & Aesthetics
- Spheres of Life
- Global Cultures

You have to obtain two achievements with 3 credits each and one achievement with 5 credits. To self-record achievements in the in-depth module, you first have to elect the matching partial achievement.

Note: If you registered for the Supplementary Studies on Sustainable Development before April 1st, 2023, self-recording an achievement in this module counts as a request in the sense of §20 (2) of the regulations for the Supplementary Studies on Culture and Society. Your overall grade for the supplementary studies will thus be calculated as the average of the examination grades, not as the average of the module grades.

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112653</td>
<td>Basics Module - Self Assignment BAK</td>
<td>3 CR</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>In-depth Module (Election: 3 items)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-ZAK-112654</td>
<td>In-depth Module - Technology & Responsibility - Self Assignment BAK</td>
<td>3 CR</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112655</td>
<td>In-depth Module - Doing Culture - Self Assignment BAK</td>
<td>3 CR</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112656</td>
<td>In-depth Module - Media & Aesthetics - Self Assignment BAK</td>
<td>3 CR</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112657</td>
<td>In-depth Module - Spheres of Life - Self Assignment BAK</td>
<td>3 CR</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112658</td>
<td>In-depth Module - Global Cultures - Self Assignment BAK</td>
<td>3 CR</td>
<td>Mielke, Myglas</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112660</td>
<td>Practice Module</td>
<td>4 CR</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112659</td>
<td>Oral Exam - Supplementary Studies on Culture and Society</td>
<td>4 CR</td>
<td>Mielke, Myglas</td>
</tr>
</tbody>
</table>

Competence Certificate
The monitoring is explained in the respective partial achievement.

They are composed of:

- minutes
- presentations
- a seminar paper
- an internship report
- an oral examination

After successful completion of the supplementary studies, the graduates receive a graded certificate and a KIT certificate.
Prerequisites
The offer is study-accompanying and does not have to be completed within a defined period of time. Enrolment or acceptance for graduation must be present when registering for the final examination.

KIT students register for the supplementary studies by selecting this module in the student portal and self-checking a performance. In addition, registration for the individual courses is necessary, which is possible shortly before the beginning of each semester.

The course catalogue, statutes (study regulations), registration form for the oral exam, and guides for preparing the various written performance requirements can be found as downloads on the ZAK homepage at www.zak.kit.edu/begleitstudium-bak.

Competence Goal
Graduates of the Supplementary Studies on Culture and Society demonstrate a sound basic knowledge of conditions, procedures and concepts for analysing and shaping fundamental social development tasks in connection with cultural topics. They have gained a well-founded theoretical and practical insight into various cultural studies and interdisciplinary topics in the field of tension between culture, technology and society in the sense of an expanded concept of culture.

They are able to place the contents selected from the specialization module in the basic context as well as to analyse and evaluate the contents of the selected courses independently and exemplarily and to communicate about them scientifically in written and oral form. Graduates are able to analyse social topics and problem areas and critically reflect on them in a socially responsible and sustainable perspective.

Content
The Supplementary Studies on Culture and Society can be started from the 1st semester and is not limited in time. It comprises at least 3 semesters. The supplementary studies are divided into 3 modules (basics, in-depth studies, practice). A total of 22 credit points (ECTS) are earned.

The thematic elective areas of the supplementary studies are divided into the following 5 modules and their sub-topics:

Block 1 Technology & Responsibility
Value change / ethics of responsibility, technology development / history of technology, general ecology, sustainability

Block 2 Doing Culture
Cultural studies, cultural management, creative industries, cultural institutions, cultural policy

Block 3 Media & Aesthetics
Media communication, cultural aesthetics

Block 4 Spheres of Life
Cultural sociology, cultural heritage, architecture and urban planning, industrial science

Block 5 Global Cultures
Multiculturalism / interculturalism / transculturalism, science and culture

Module grade calculation
The overall grade of the supplementary studies is calculated as an average of the grades of the examination performances weighted with credit points.

In-depth Module
- presentation 1 (3 ECTS)
- presentation 2 (3 ECTS)
- seminar paper incl. presentation (5 ECTS)
- oral examination (4 ECTS)

Annotation
With the Supplementary Studies on Culture and Society, KIT provides a multidisciplinary study offer as an additional qualification, with which the respective specialized study program is supplemented by interdisciplinary basic knowledge and interdisciplinary orientation knowledge in the field of cultural studies, which is becoming increasingly important for all professions.

Within the framework of the supplementary studies, students acquire in-depth knowledge of various cultural studies and interdisciplinary subject areas in the field of tension between culture, technology and society. In addition to high culture in the classical sense, other cultural practices, common values and norms as well as historical perspectives of cultural developments and influences are considered.

In the courses, conditions, procedures and concepts for the analysis and design of fundamental social development tasks are acquired on the basis of an expanded concept of culture. This includes everything created by humans - also opinions, ideas, religious or other beliefs. The aim is to develop a modern concept of cultural diversity. This includes the cultural dimension of education, science and communication as well as the preservation of cultural heritage. (UNESCO, 1982)

According to § 16 of the statutes, a reference and a certificate are issued by the ZAK for the supplementary studies. The achievements are also shown in the transcript of records of the degree program and, upon request, in the certificate. They can also be recognized in the interdisciplinary qualifications (see elective information).
Workload
The workload is made up of the recommended number of hours for the individual modules:

- basic module approx. 90 h
- in-depth module approx. 340 h
- practical module approx. 120 h

total: approx. 550 h

Learning type
- lectures
- seminars
- workshops
- practical course

Literature
Recommended reading of primary and specialized literature will be determined individually by each instructor.
4.64 Module: Supplementary Studies on Sustainable Development [M-ZAK-106099]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation: Additional Examinations (Usage from 4/1/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>3 terms</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Election notes
With the exception of the final oral exam, students have to self-record the achievements obtained in the Supplementary Studies on Sustainable Development in their study plan. ZAK records the achievements as "non-assigned" under "ÜQ/SQ-Leistungen". Further instructions on self-recording of achievements can be found in the FAQ at https://campus.studium.kit.edu/ and on the ZAK homepage at https://www.zak.kit.edu/begleitstudium-bene. The title of the examination and the amount of credits override the modules placeholders.

If you want to use ZAK achievements both for your interdisciplinary qualifications and for the supplementary studies, please record them in the interdisciplinary qualifications first. You can then get in contact with the ZAK study services (stg@zak.kit.edu) to also record them in your supplementary studies.

In the elective module, you need to obtain 6 credits worth of achievements in two of the four areas:

- Sustainable Cities & Neighbourhoods
- Sustainable Assessment of Technology
- Subject, Body, Individual: The Other Side of Sustainability
- Sustainability in Culture, Economy & Society

Usually, two achievements with 3 credits each have to be obtained. To self-record achievements in the elective module, you first have to elect the matching partial achievement.

Note: If you registered for the Supplementary Studies on Sustainable Development before April 1st, 2023, self-recording an achievement in this module counts as a request in the sense of §19 (2) of the regulations for the Supplementary Studies on Sustainable Development. Your overall grade for the supplementary studies will thus be calculated as the average of the examination grades, not as the average of the module grades.

Mandatory

<table>
<thead>
<tr>
<th>T-ZAK-112345</th>
<th>Basics Module - Self Assignment BeNe</th>
<th>3 CR</th>
<th>Myglas</th>
</tr>
</thead>
</table>

Elective Module (Election: at least 6 credits)

<table>
<thead>
<tr>
<th>T-ZAK-112347</th>
<th>Elective Module - Sustainable Cities and Neighbourhoods - Self Assignment BeNe</th>
<th>3 CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112348</td>
<td>Elective Module - Sustainability Assessment of Technology - Self Assignment BeNe</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-ZAK-112349</td>
<td>Elective Module - Subject, Body, Individual: The Other Side of Sustainability - Self Assignment BeNe</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-ZAK-112350</td>
<td>Elective Module - Sustainability in Culture, Economy and Society - Self Assignment BeNe</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-ZAK-112346</th>
<th>Specialisation Module - Self Assignment BeNe</th>
<th>6 CR</th>
<th>Myglas</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112351</td>
<td>Oral Exam - Supplementary Studies on Sustainable Development</td>
<td>4 CR</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The monitoring is explained in the respective partial achievement.

They are composed of:
- protocols
- a reflection report
- presentations
- presentations
- the elaboration of a project work
- an individual term paper

Upon successful completion of the supplementary studies, graduates receive a graded report and a certificate issued by ZAK.
Prerequisites
The course is offered during the course of study and does not have to be completed within a defined period of time. Enrolment is required for all performance assessments of the modules of the supplementary studies. Participation in the supplementary studies is regulated by § 3 of the statutes.

KIT students register for the supplementary studies by selecting this module in the student portal and self-booking a performance. Registration for courses, performance assessments and examinations is regulated by § 6 of the Statutes and is usually possible shortly before the beginning of the semester.

The course catalogue, statutes (study regulations), registration form for the oral exam and guidelines for preparing the various written performance requirements can be found as downloads on the ZAK homepage at http://www.zak.kit.edu/begleitstudium-bene.

Competence Goal
Graduates of the supplementary studies in sustainable development acquire additional practical and professional competencies. Thus, the supplementary study program enables the acquisition of basics and initial experience in project management, trains teamwork skills, presentation skills and self-reflection, and also creates a fundamental understanding of sustainability that is relevant for all professional fields.

Graduates are able to analyse social topics and problem areas and critically reflect on them in a socially responsible and sustainable perspective. They are able to place the contents selected from the modules "Elective" and "Advanced" in the basic context as well as to independently and exemplarily analyse and evaluate the contents of the selected courses and to scientifically communicate about them in written and oral form.

Content
The supplementary study program Sustainable Development can be started from the 1st semester and is not limited in time. The wide range of courses offered by ZAK makes it possible to complete the program usually within three semesters. The supplementary studies comprise 19 credit points (LP). It consists of three modules: Basic Module, Elective Module and Advanced Module.

The thematic elective areas of the supplementary studies are divided into the following 4 modules and their subtopics in Module 2 (elective module):

Block 1 Sustainable Cities and Neighbourhoods
The courses provide an overview of the interaction of social, ecological, and economic dynamics in the microcosm of the city.

Block 2 Sustainability Assessment of Technology
Mostly based on ongoing research activities, methods and approaches of technology assessment are elaborated.

Block 3 Subject, Body, Individual: The other Side of Sustainability
Different approaches are presented to the individual perception, experience, shaping and responsibility of relationships to the environment and to oneself.

Block 4 Sustainability in Culture, Economy & Society
Courses usually have an interdisciplinary approach, but may also focus on one of the areas of culture, economics or society, both in application and in theory.

The core of the supplementary studies is a case study in the specialization area. In this project seminar, students conduct sustainability research with practical relevance themselves. The case study is supplemented by an oral examination with two topics from module 2 (elective module) and module 3 (in-depth module).

Module grade calculation
The overall grade of the supplementary studies is calculated as an average of the grades of the examination performances weighted with credit points.

Elective module
- Presentation 1 (3 ECTS)
- Presentation 2 (3 ECTS)

Advanced module
- individual term paper (6 ECTS)
- oral examination (4 ECTS)
Annotation
The Supplementary Studies on Sustainable Development at KIT is based on the conviction that a long-term socially and ecologically compatible coexistence in the global world is only possible if knowledge about necessary changes in science, economy and society is acquired and applied.

The interdisciplinary and transdisciplinary Studies on Sustainable Development enables diverse access to transformation knowledge as well as basic principles and application areas of sustainable development. According to the statutes § 16, a certificate is issued by the ZAK for the complementary studies.

The achievements are also shown in the transcript of records of the degree program and, upon request, in the certificate. They can also be recognized in the interdisciplinary qualifications (see elective information).

In the specialised studies, modules and partial achievements can be recognised within the framework of the additional achievements or e.g. the interdisciplinary qualifications. This must be regulated via the respective subject study programme.

The focus is on experience- and application-oriented knowledge and competences, but theories and methods are also learned. The aim is to be able to represent one's own actions as a student, researcher and later decision-maker as well as an individual and part of society under the aspect of sustainability.

Sustainability is understood as a guiding principle to which economic, scientific, social and individual actions should be oriented. According to this, the long-term and socially just use of natural resources and the material environment for a positive development of global society can only be addressed by means of integrative concepts. Therefore, "education for sustainable development" in the sense of the United Nations programme plays just as central a role as the goal of promoting "cultures of sustainability". For this purpose, practice-centred and research-based learning of sustainability is made possible and the broad concept of culture established at ZAK is used, which understands culture as habitual behaviour, lifestyle and changing context for social actions.

The supplementary study programme conveys the basics of project management, trains teamwork skills, presentation skills and self-reflection. Complementary to the specialised studies at KIT, it creates a fundamental understanding of sustainability, which is important for all professional fields. Integrative concepts and methods are essential: in order to use natural resources in the long term and to shape the global future in a socially just way, not only different disciplines, but also citizens, practitioners and institutions must work together.

Workload
The workload is made up of the number of hours of the individual modules:

- Basic module approx. 180 h
- Elective module approx. 150 h
- Consolidation module approx. 180 h

Total: approx. 510 h

Learning type
- lectures
- seminars
- workshops

Literature
Recommended reading of primary and specialist literature is determined individually by the respective lecturer.
5 Courses

5.1 Course: Advanced Fluid Mechanics [T-BGU-106612]

Responsible: Prof. Dr. Olivier Eiff
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-103359 - Advanced Fluid Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 6221701 | Advanced Fluid Mechanics | 4 SWS | Lecture / Practice (/) | Eiff |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⚒️ On-Site, ❌ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.2 Course: Applied Ecology and Water Quality [T-BGU-109956]

Responsible: PD Dr.-Ing. Stephan Fuchs
 Dr.-Ing. Stephan Hilgert

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-104922 - Freshwater Ecology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 6223813</td>
<td>3</td>
<td>Seminar /</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hilgert, Fuchs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
term paper, appr. 8-15 pages, and
presentation, appr. 15 min.

Prerequisites
none

Recommendation
none

Annotation
The number of participants in the course is limited to 12 persons. The registration is to be made via ILIAS. The places are allocated considering the progress in the students' studies, with priority to students from Water Science and Engineering, then Civil Engineering and Geocology and further study programs. The attendance at the first meeting is mandatory. In case of absence the place will be assigned to a person on the waiting list.
5.3 Course: Basics Module - Self Assignment BAK [T-ZAK-112653]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The monitoring in this module includes a course credit according to § 5 section 4 in the form of minutes of which two are to be handed in freely chosen topics of the lecture series "Introduction to Applied Studies on Culture and Society". Length: approx. 6,000 characters each (incl. spaces).

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation

Annotation
The Basic Module consists of the lecture "Introduction to Supplementary Studies on Culture and Society", which is offered only in the winter semester. It is therefore recommended that students start their studies in the winter semester and complete them before module 2.
5 COURSES

Course: Basics Module - Self Assignment BeNe [T-ZAK-112345]

5.4 Course: Basics Module - Self Assignment BeNe [T-ZAK-112345]

Responsible: Christine Myglas
Organisation: Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The monitoring in this module includes a course credit according to § 5 section 4:

Introduction to Sustainable Development in the form of minutes of which two are to be handed in freely chosen topics of the lecture series "Introduction to Sustainable Development". Length: approx. 6,000 characters each (incl. spaces).

or

Sustainability Spring Days at KIT in the form of a reflection report on all components of the project days "Sustainability Spring Days at KIT". Length approx. 12,000 characters (incl. spaces).

Prerequisites

None

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation

Annotation

Module Basics consists of the lecture "Introduction to Sustainable Development", which is only offered in the summer semester or alternatively of the project days "Sustainability Spring Days at KIT", which is only offered in the winter semester. It is recommended to complete the course before Elective Module or Specialisation Module.

In exceptional cases, Elective Module or Specialisation Module can also be completed simultaneously with Basics Module. However, the prior completion of the advanced modules Elective and Specialisation should be avoided.
5.5 Course: Biofilm Systems [T-CIWVT-106841]

Responsible: Dr. Andrea Hille-Reichel
Dr. Michael Wagner

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103441 - Biofilm Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2233820</th>
<th>Biofilm Systems</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Hille-Reichel, Wagner</th>
</tr>
</thead>
</table>

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.6 Course: Booklet Integrated Infrastructure Planning [T-BGU-106763]

Responsible: Dr. rer. nat. Charlotte Kämpf

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103380 - Integrated Infrastructure Planning

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
booklet; DIN A5, appr. 15 pages

Prerequisites
none

Recommendation
none

Annotation
none
5.7 Course: Brownfield Sites - Investigation, Evaluation, Rehabilitation [T-BGU-100089]

Responsible: Dr.-Ing. Andreas Bieberstein
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-100079 - Environmental Geotechnics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 6251915 | Brownfield Sites - Investigation, Evaluation, Rehabilitation | 2 SWS | Lecture / 🗣 | Bieberstein, Eiche, Würdemann, Mohrlok |

Legend: 🖥 Online, ⬿ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.8 Course: Deep Learning in Hydrological Modeling [T-BGU-112171]

Responsible: Dr. rer. nat. Ralf Loritz
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-105994 - Deep Learning in Hydrological Modeling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 6224912 | Deep Learning in Hydrological Modeling | 4 SWS | Lecture / Practice (/) | Loritz |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
scientific presentation appr. 15 min., report appr. 10 pages

Prerequisites
none

Recommendation
none

Annotation
none
Course: Design Exercise Hydraulic Structures [T-BGU-111929]

Responsible: Prof. Dr. Mario Jorge Rodrigues Pereira da Franca
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-103376 - Hydraulic Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>6222703</td>
<td>Design of Hydraulic Structures</td>
<td>Lecture / Practice (/</td>
<td>2 SWS</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🕰 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
1 design exercise, report about 10 pages

Prerequisites
none

Recommendation
none

Annotation
none
Course: Design Exercise River Engineering [T-BGU-111928]

Responsible: Prof. Dr. Mario Jorge Rodrigues Pereira da Franca
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103376 - Hydraulic Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>1</th>
<th>Grading scale</th>
<th>pass/fail</th>
<th>Recurrence</th>
<th>Each summer term</th>
<th>Expansion</th>
<th>1 terms</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

Events

| ST 2024 | 6222701 | River Engineering | 2 SWS | Lecture / Practice (/ Rodrigues Pereira da Franca |

Legend: 🖥 Online, ℹ️ Blended (On-Site/Online), 🗺️ On-Site, ❌ Cancelled

Competence Certificate
1 design exercise, report about 10 pages

Prerequisites
none

Recommendation
none

Annotation
none
5.11 Course: Earthwork and Embankment Dams [T-BGU-106792]

Responsible: Dr.-Ing. Andreas Bieberstein

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103402 - Earthwork and Embankment Dams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6251703</td>
<td>Basics in Earthworks and Embankment Dams</td>
<td>2</td>
<td>Lecture / Practice (/ 🗣️)</td>
<td>Bieberstein</td>
</tr>
<tr>
<td>ST 2024</td>
<td>6251816</td>
<td>Embankment Dams (Advanced)</td>
<td>2</td>
<td>Lecture / Practice (/ 🗣️)</td>
<td>Bieberstein</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 40 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.12 Course: Elective Module - Subject, Body, Individual: the Other Side of Sustainability - Self Assignment BeNe [T-ZAK-112349]

Organisation:
Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Examination of another kind according to § 7 section 7 in the form of a presentation in the selected course.

Prerequisites
Prerequisite for the ‘Oral Examination’ is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary stdues
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation
The content of the Basics Module is helpful.
5.13 Course: Elective Module - Sustainability Assessment of Technology - Self Assignment BeNe [T-ZAK-112348]

Organisation:
- Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Examination of another kind according to § 7 section 7 in the form of a presentation in the selected course.

Prerequisites
Prerequisite for the ‘Oral Examination’ is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation
The content of the Basics Module is helpful.
5 COURSES Course: Elective Module - Sustainability in Culture, Economy and Society - Self Assignment BeNe [T-ZAK-112350]

5.14 Course: Elective Module - Sustainability in Culture, Economy and Society - Self Assignment BeNe [T-ZAK-112350]

Organisation:

Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Examination of another kind according to § 7 section 7 in the form of a presentation in the selected course.

Prerequisites
Prerequisite for the ‘Oral Examination’ is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation
The content of the Basics Module is helpful.
5.15 Course: Elective Module - Sustainable Cities and Neighbourhoods - Self Assignment BeNe [T-ZAK-112347]

Organisation: University

Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Examination of another kind according to § 7 section 7 in the form of a presentation in the selected course.

Prerequisites
Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary stdues
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation
The content of the Basics Module is helpful.
5.16 Course: Environmental Biotechnology [T-CIWVT-106835]

Responsible: Andreas Tiehm
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103436 - Applied Microbiology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 2233810 | Environmental Biotechnology | 2 SWS | Lecture / Tiehm |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

oral exam, ca. 30 min.

Prerequisites

none

Recommendation

none

Annotation

none
5.17 Course: Environmental Communication [T-BGU-101676]

Responsible: Dr. rer. nat. Charlotte Kämpf
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-101108 - Environmental Communication

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 6224905</td>
<td></td>
<td></td>
<td></td>
<td>Kämpf</td>
</tr>
<tr>
<td>Umweltkommunikation / Environmental Communication</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 6224905</td>
<td></td>
<td></td>
<td></td>
<td>Kämpf</td>
</tr>
<tr>
<td>Environmental Communication</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧬 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
- presentation, appr. 15 min.,
- manuscript, appr. 6000 words, and
- Poster DIN-A3

Prerequisites
The accomplishment 'Examination Prerequisite Environmental Communication' (T-BGU-106620) has to be passend.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-106620 - Examination Prerequisite Environmental Communication must have been passed.

Recommendation
none

Annotation
none
5.18 Course: Environmental Fluid Mechanics [T-BGU-106767]

Responsible: Prof. Dr. Olivier Eiff
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-103383 - Environmental Fluid Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 6221909 | Environmental Fluid Mechanics | 4 SWS | Lecture / Practice | Eiff |

Legend: 🖥 Online, 🪤 Blended (On-Site/Online), 🗽 On-Site, ✗ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.19 Course: Examination on Turbulent Diffusion [T-PHYS-109981]

Responsible: Dr. Gholamali Hoshyaripour
Organisation: KIT Department of Physics
Part of: M-PHYS-105776 - Applied Meteorology: Turbulent Diffusion

Type
Oral examination

Credits
3

Grading scale
Grade to a third

Recurrence
Each summer term

Version
3

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Short Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>4052081</td>
<td>Turbulent Diffusion</td>
<td></td>
<td>Lecture / 🗣</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
<td>Hoshayripour, Hoose</td>
</tr>
<tr>
<td>ST 2024</td>
<td>4052082</td>
<td>Exercises to Turbulent Diffusion</td>
<td></td>
<td>Practice / 🗣</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
<td>Hoshayripour, Hoose, Chopra</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🎤 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

oral exam, appr. 30 min.

Prerequisites

The not graded accomplishment 'Turbulent Diffusion' (T-PHYS-111427) has to be passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-PHYS-111427 - Turbulent Diffusion must have been passed.

Recommendation

none

Annotation

none
5.20 Course: Examination Prerequisite Environmental Communication [T-BGU-106620]

Responsible: Dr. rer. nat. Charlotte Kämpf
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-101108 - Environmental Communication

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6224905</td>
<td>Umweltkommunikation / Environmental Communication</td>
<td>2</td>
<td>Seminar / 📚</td>
<td>Kämpf</td>
</tr>
<tr>
<td>ST 2024</td>
<td>6224905</td>
<td>Environmental Communication</td>
<td>2</td>
<td>Seminar / 🧩</td>
<td>Kämpf</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 📚 On-Site, ✗ Cancelled

Competence Certificate

2 literature annotations, appr. 150 words each, and short presentation, appr. 10 min.

Prerequisites

none

Recommendation

none

Annotation

none
5.21 Course: Exercises: Membrane Technologies [T-CIWVT-113235]

Responsible: Prof. Dr. Harald Horn
Dr.-Ing. Florencia Saravia

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105380 - Membrane Technologies in Water Treatment

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2233011 | Membrane Technologies in Water Treatment - Exercises | 1 SWS | Practice / 🧩 | Horn, Saravia, und Mitarbeiter |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⛔ On-Site, ❌ Cancelled

Competence Certificate
submission of exercises, membrane design and short presentation, 5 min., group work

Prerequisites
none

Recommendation
none

Annotation
none
5.22 Course: Excursions: Water Supply [T-CIWVT-110866]

Responsible: Dr. Gudrun Abbt-Braun
Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103440 - Practical Course in Water Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
attendance at two excursions, delivery of excursion reports

Prerequisites
none

Recommendation
none

Annotation
none
5.23 Course: Experimental Hydraulics [T-BGU-112374]

Responsible: Dr.-Ing. Frank Seidel
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-106114 - Experimental Hydraulics and Measurement Techniques

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 6222907 | Experimental Hydraulics | 2 SWS | Lecture / Practice (| Seidel |

Competence Certificate
term paper, appr. 10 pages

Prerequisites
none

Recommendation
none

Annotation
none
5.24 Course: Experiments in Fluid Mechanics [T-BGU-106760]

Responsible: Prof. Dr. Olivier Eiff

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103377 - Experiments in Fluid Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 6221802 | Experiments in Fluid Mechanics | 4 SWS | Lecture / Practice (/ Eiff, Mitarbeiter/innen |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⚡ On-Site, ✗ Cancelled

Competence Certificate

Laboratory reports with analyses of the experiments in small teams, each appr. 10 pages including figures and tables, and oral exam, appr. 30 min.

Prerequisites

None

Recommendation

None

Annotation

None
5.25 Course: Field Training Water Quality [T-BGU-109957]

Responsible:PD Dr.-Ing. Stephan Fuchs
Dr.-Ing. Stephan Hilgert

Organisation:KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:M-BGU-104922 - Freshwater Ecology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6223814</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competition Certificate
report on field training, appr. 8-15 pages

Prerequisites
The 'Teilleistung' Applied Ecology and Water Quality (T-BGU-109956, seminar paper with presentation) has to be begun, i.e. at least the registration has to be made.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-109956 - Applied Ecology and Water Quality must have been started.

Recommendation
none

Annotation
The number of participants in the course is limited to 12 persons. The registration is to be made via ILIAS. The places are allocated considering the progress in the students' studies, with priority to students from Water Science and Engineering, then Civil Engineering and Geocology and further study programs. The attendance at the first meeting is mandatory. In case of absence the place will be assigned to a person on the waiting list.
5.26 Course: Field Trip Karst Hydrogeology [T-BGU-110413]

Responsible: Prof. Dr. Nico Goldscheider
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-105790 - Karst Hydrogeology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 6339078 | Field Trip Karst Hydrogeology | 1 SWS | Practice / 🗣 | Goldscheider |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Annotation
The practical part of this course is carried out in presence. The field courses are essential for the progress of the participants.
5.27 Course: Flow Measurement Techniques [T-BGU-110411]

Responsible: Dr.-Ing. Christof-Bernhard Gromke
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-106114 - Experimental Hydraulics and Measurement Techniques

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 6221907 | Flow Measurement Techniques | 2 SWS | Lecture / Practice | Gromke |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.28 Course: Fluid Mechanics of Turbulent Flows [T-BGU-110841]

Responsible: Prof. Dr.-Ing. Markus Uhlmann

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-105361 - Fluid Mechanics of Turbulent Flows

Type: Oral examination

Credits: 6

Grading scale: Grade to a third

Recurrence: Each term

Version: 1

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>6221806</th>
<th>Fluid Mechanics of Turbulent Flows</th>
<th>4 SWS</th>
<th>Lecture / Practice (/)</th>
<th>Uhlmann</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 📦 Blended (On-Site/Online), ⚒ On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 45 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.29 Course: Fundamental Numerical Algorithms for Engineers [T-BGU-109953]

Responsible: Prof. Dr.-Ing. Markus Uhlmann
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-104920 - Fundamental Numerical Algorithms for Engineers

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Credits</th>
<th>Module Name</th>
<th>Type</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6221912</td>
<td>Fundamental Numerical Algorithms for Engineers</td>
<td>2 SWS</td>
<td>Each term</td>
<td>Uhlmann, Herlina</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
written exam, 60 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.30 Course: Fundamentals of Environmental Geodesy Part B [T-BGU-109329]

Responsible: Prof. Dr.-Ing. Hansjörg Kutterer
Dr.-Ing. Michael Mayer

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103442 - Remote Sensing and Positioning

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>CR</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>6020151</td>
<td>Fundamentals of Environmental Geodesy - Part B</td>
<td>Lecture / Practice</td>
<td>2 SWS</td>
<td>Kutterer, Mayer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
successfully completed exercises and oral presentation

Prerequisites
none

Recommendation
none

Annotation
none
5.31 Course: Fundamentals of Water Quality [T-CIWVT-106838]

Responsible: Dr. Gudrun Abbt-Braun
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103438 - Fundamentals of Water Quality

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Event Details</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2233230</td>
<td>Fundamentals of Water Quality</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Abbt-Braun</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2233231</td>
<td>Fundamentals of Water Quality - Exercises</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Abbt-Braun, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ✨ Blended (On-Site/Online), ✏️ On-Site, ✗ Cancelled

Competence Certificate

written exam, 90 min.

Prerequisites

none

Recommendation

none

Annotation

none
5.32 Course: General Meteorology [T-PHYS-101091]

Responsible: apl. Prof. Dr. Michael Kunz
Organisation: KIT Department of Physics
Part of: M-PHYS-103732 - General Meteorology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>4051011</td>
<td>Allgemeine Meteorologie</td>
<td>3 SWS</td>
<td>Lecture / 📁</td>
<td>Kunz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4051012</td>
<td>Übungen zur Allgemeinen Meteorologie</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Kunz, Maurer, NN</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 📁 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Presenting one exercise and test (not graded)

Prerequisites
None

Recommendation
None

Annotation
None
5.33 Course: Geo Data Infrastructures and Web Services [T-BGU-101756]

Responsible: Dr.-Ing. Sven Wursthorn

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-101044 - Geodata Infrastructures and Web-Services

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>1</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>6026204</th>
<th>Geodateninfrastrukturen und Webdienste</th>
<th>1 SWS</th>
<th>Lecture / 🗣</th>
<th>Wursthorn</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>6026205</td>
<td>Geodateninfrastrukturen und Webdienste, Übung</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Wursthorn</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🗸 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
The accomplishment 'Geodata Infrastructures and Web-Services, Prerequisite' (T-BGU-101757) has to be passed

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-101757 - Geodata Infrastructures and Web-Services, Prerequisite must have been passed.

Recommendation
none

Annotation
none
5.34 Course: Geodata Infrastructures and Web-Services, Prerequisite [T-BGU-101757]

Responsible: Dr.-Ing. Sven Wursthorn
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-101044 - Geodata Infrastructures and Web-Services

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 6026204</td>
<td>Geodateninfrastrukturen und Webdienste</td>
<td>1 SWS</td>
<td>Lecture / 🗣</td>
<td>Wursthorn</td>
<td></td>
</tr>
<tr>
<td>ST 2024 6026205</td>
<td>Geodateninfrastrukturen und Webdienste, Übung</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Wursthorn</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🟢 Blended (On-Site/Online), 🗣 On-Site, 🗿 Cancelled

Competence Certificate
working on exercises

Prerequisites
none

Recommendation
none

Annotation
none
5.35 Course: Geostatistics [T-BGU-106605]

Responsible: Dr. Mirko Mälicke
Prof. Dr.-Ing. Erwin Zehe

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103762 - Analysis of Spatial Data

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>6224805</th>
<th>Geostatistics</th>
<th>4 SWS</th>
<th>Lecture / Practice</th>
<th>Mälicke, Zehe</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🌐 Blended (On-Site/Online), 🗽 On-Site, ✗ Cancelled

Competence Certificate

presentation of an exercise, appr. 15 min. (max. 30 points), and submission of a project report, appr. 12 pages (max. 70 points); passed with min. 60 points

Prerequisites

none

Recommendation

none

Annotation

none
5.36 Course: Groundwater Flow around Structures [T-BGU-106774]

Responsible: Dr.-Ing. Michele Trevisson

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103389 - Hydraulic Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 6221815 | Groundwater Flow around Structures | 2 SWS | Lecture / Practice (/) Trevisson |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.37 Course: Groundwater Hydraulics [T-BGU-100624]

Responsible: Dr. Ulf Mohrlok
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-100340 - Groundwater Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 6221801 | Groundwater Hydraulics | 2 SWS | Lecture / Practice (/) | Mohrlok |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.38 Course: Homework 'Introduction to Environmental Data Analysis and Statistical Learning' [T-BGU-109950]

- **Responsible:** PD Dr.-Ing. Uwe Ehret
- **Organisation:** KIT Department of Civil Engineering, Geo and Environmental Sciences
- **Part of:** M-BGU-104880 - Introduction to Environmental Data Analysis and Statistical Learning

Type
- Completed coursework

Credits
- 2

Grading scale
- pass/fail

Recurrence
- Each winter term

Version
- 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>W/L</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6224908</td>
<td>Introduction to Environmental Data Analysis and Statistical Learning</td>
<td>Lecture / Practice</td>
<td>4 SWS</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>Completed coursework</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate
- course associated assignments, short reports appr. 1 page each

Prerequisites
- none

Recommendation
- none

Annotation
- none
5.39 Course: Hydraulic Engineering [T-BGU-106759]

Responsible: Prof. Dr. Mario Jorge Rodrigues Pereira da Franca
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-103376 - Hydraulic Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2 SWS</td>
<td>Lecture / Practice (/ Rodrigues Pereira da Franca)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6222701</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>River Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2 SWS</td>
<td>Lecture / Practice (/ Seidel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6222703</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design of Hydraulic Structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 75 min.

Prerequisites
The not graded accomplishments 'Design Exercise River Engineering', T-BGU-111928, and 'Design Exercise Hydraulic Structures', T-BGU-111929, have to be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-111928 - Design Exercise River Engineering must have been passed.
2. The course T-BGU-111929 - Design Exercise Hydraulic Structures must have been passed.

Recommendation
none

Annotation
none
5.40 Course: Hydro Power Engineering [T-BGU-100139]

Responsible: Dr.-Ing. Peter Oberle

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-100103 - Hydro Power Engineering

Type
Oral examination

Credits
6

Grading scale
Grade to a third

Recurrence
Each term

Version
1

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>6222801</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Oberle</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.41 Course: Hydrogeology [T-BGU-106801]

Responsible: Prof. Dr. Nico Goldscheider

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103406 - Hydrogeology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type of Lecture</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>6310416</td>
<td>General & Applied Hydrogeology</td>
<td>3 SWS</td>
<td>Lecture</td>
<td>Goldscheider</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑️ Cancelled

Competence Certificate

written exam, 90 min.

Prerequisites

none

Recommendation

none

Annotation

none
5.42 Course: Hydrological Measurements in Environmental Systems [T-BGU-106599]

Responsibility: Dr. Jan Wienhöfer
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-103763 - Hydrological Measurements in Environmental Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>Event ID</th>
<th>Event Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>6224807</td>
<td>Hydrological Measurements in Environmental Systems</td>
<td>4</td>
<td>4 SWS</td>
<td>Wienhöfer, Mitarbeiter/innen</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧱 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The examination consists of four parts:

1. active participation in the seminar (presentation ~ 20 mins)
2. active participation in field and lab work
3. documentation of the field experiments (report ~ 10 pages)
4. analysis of field data (presentation ~ 20 mins and report ~10 pages)

Each part is graded with points, and the overall grade is determined by the number of points obtained. Passing the exam requires at least 1 point in each of the four parts, and in total the minimum number of points.

Prerequisites
none

Recommendation
none

Annotation
The course requires a minimum number of 6 and a maximum number of 30 participants. Please register online for the course (not exam!), 6224807, via the Campus portal (in exceptional cases via e-mail to the responsible lecturer). Participants are selected according to their progress of study considering the following order: students of Water Science and Engineering, students of Civil Engineering, students of Geoecology.
5 COURSES

5.43 Course: In-depth Module - Doing Culture - Self Assignment BAK [T-ZAK-112655]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT).
In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.
The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization.
In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites
Prerequisite for the ‘Oral Examination’ is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary stdues
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation
The content of the Basic Modul is helpful.
5.44 Course: In-depth Module - Global Cultures - Self Assignment BAK [T-ZAK-112658]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT).
In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.
The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization.
In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites
Prerequisite for the ‘Oral Examination’ is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary stdues
This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation
The content of the Basic Modul is helpful.
5.45 Course: In-depth Module - Media & Aesthetics - Self Assignment BAK [T-ZAK-112656]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT).
In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.
The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization.
In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites
Prerequisite for the ‘Oral Examination’ is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation
The content of the Basic Modul is helpful.
Competence Certificate

At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT).

In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.

The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization.

In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites

Prerequisite for the ‘Oral Examination’ is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation

The content of the Basic Modul is helpful.
5.47 Course: In-depth Module - Technology & Responsibility - Self Assignment BAK [T-ZAK-112654]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT).
In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.
The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization.
In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites
Prerequisite for the ‘Oral Examination’ is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary stdues
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation
The content of the Basic Modul is helpful.
5.48 Course: Industrial Wastewater Treatment [T-CIWVT-111861]

Responsible: Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105903 - Industrial Wastewater Treatment

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2233020 | Industrial Wastewater Treatment | 2 SWS | Lecture / 🗤 | Hom |

Legend: 📱 Online, 🧩 Blended (On-Site/Online), 🗤 On-Site, ❌ Cancelled

Competence Certificate
oral exam appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.49 Course: Instrumental Analytics [T-CIWVT-106837]

Responsible: apl. Prof. Dr. Gisela Guthausen

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103437 - Instrumental Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lectures</th>
<th>Period</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2245110</td>
<td>Instrumental Analytics</td>
<td>2 SWS</td>
<td>Guthausen</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🎤 Blended (On-Site/Online), ⌚ On-Site, ✗ Cancelled

Competence Certificate
oral exam, 30 min.

Prerequisites
The accomplishment 'Organic Trace Analysis of Aqueous Samples' (T-CIWVT-106836) has to be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-CIWVT-106836 - Organic Trace Analysis of Aqueous Samples must have been passed.

Recommendation
one

Annotation
one
5.50 Course: Integrated Design Project in Water Resources Management [T-BGU-111275]

Responsible: PD Dr.-Ing. Uwe Ehret
Dr.-Ing. Frank Seidel

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-105637 - Integrated Design Project in Water Resources Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 6224801 | Integrated Design Project in Water Resources Management | 4 SWS | Lecture / Practice | Ehret, Seidel |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

project work, report approx. 15 pages with presentation approx. 15 min.

Prerequisites

none

Recommendation

none

Annotation

none
Course: Integrated Infrastructure Planning [T-BGU-106764]

Responsible: Dr. rer. nat. Charlotte Kämpf

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103380 - Integrated Infrastructure Planning

Type
Written examination

Credits
6

Grading scale
Grade to a third

Recurrence
Each winter term

Version
1

Competence Certificate
written exam, 60 min.

Prerequisites
The accomplishment 'Booklet Integrated Infrastructure Planning' (T-BGU-106763) has to be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-106763 - Booklet Integrated Infrastructure Planning must have been passed.

Recommendation
none

Annotation
none
5.52 Course: Interaction Flow - Hydraulic Structures [T-BGU-110404]

Responsible: Dr.-Ing. Michael Gebhardt
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-103389 - Hydraulic Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6221903</td>
<td>Interaction Flow - Hydraulic Structures</td>
<td>2 SWS</td>
<td>Lecture / Practice (Gebhardt)</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 60 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.53 Course: Introduction to Environmental Data Analysis and Statistical Learning [T-BGU-109949]

Responsible: PD Dr.-Ing. Uwe Ehret

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-104880 - Introduction to Environmental Data Analysis and Statistical Learning

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Introduction to Environmental Data Analysis and Statistical Learning</th>
<th>4 SWS</th>
<th>Lecture / Practice (/</th>
<th>Ehret</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6224908</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
written exam, 60 min.

Prerequisites
The accomplishment Homework 'Introduction to Environmental Data Analysis and Statistical Learning' (T-BGU-109265) has to be passend.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-109950 - Homework 'Introduction to Environmental Data Analysis and Statistical Learning' must have been passed.

Recommendation
one

Annotation
one
Course: Introduction to GIS for Students of Natural, Engineering and Geo Sciences [T-BGU-101681]

Responsible: Dr.-Ing. Sven Wursthorn
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-101846 - Introduction to GIS for Students of Natural, Engineering and Geo Sciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Credit</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6071101</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, V/Ü</td>
<td>4 SWS</td>
<td>Lecture / Practice (/ Wursthorn</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⚡ On-Site, ✗ Cancelled

Competence Certificate

written exam, 90 min.

Prerequisites

'Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite ' (T-BGU-103541) has to be passed

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-BGU-103541 - Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite must have been passed.

Recommendation

none

Annotation

none
5.55 Course: Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite [T-BGU-103541]

Responsible: Dr.-Ing. Sven Wursthorn
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-101846 - Introduction to GIS for Students of Natural, Engineering and Geo Sciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>3</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, V/Ü</td>
<td>4 SWS</td>
<td>Lecture / Practice (/)</td>
<td>Wursthorn</td>
<td>4</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗂 On-Site, ☑ Cancelled

Competence Certificate
The achievement control takes place via accepted exercises.

Prerequisites
none

Recommendation
none

Annotation
none
5.56 Course: Introduction to Matlab [T-BGU-106765]

Responsible: PD Dr.-Ing. Uwe Ehret

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103381 - Introduction to Matlab

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Codenr.</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Time</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6224907</td>
<td>Introduction to Matlab</td>
<td>2</td>
<td>Lecture / Practice (/</td>
<td>Ehret, Wienhöfer</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ❌ Cancelled

Competence Certificate

Implementation of a Matlab code within a class exercise

Prerequisites

none

Recommendation

none

Annotation

The course is limited to 60 participants. Please register via the student portal (Studierendenportal). Only in case that this should not be possible: Please register via e-mail to the responsible lecturer. Participants are selected according to their progress of study considering the following order: students of Water Science and Engineering, then students of Civil Engineering with focus 'Water and Environment', then other students.
5.57 Course: Introduction to Python [T-BGU-112598]

Responsible: Prof. Dr. Jan Cermak
Dr. Julia Fuchs
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-106199 - Introduction to Python

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>3</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>ID</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6020130</td>
<td>Introduction to Python</td>
<td>2 SWS</td>
<td>Lecture / Practice (/ 🧩)</td>
<td>Cermak</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled

Competence Certificate

Successfully completed exercises focusing on implementation and documentation of a Python code.

Prerequisites

none

Recommendation

none

Annotation

none
5.58 Course: Karst Hydrogeology [T-BGU-111592]

Responsible: Prof. Dr. Nico Goldscheider

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-105790 - Karst Hydrogeology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Course</th>
<th>Type</th>
<th>Repeat Code</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6339076</td>
<td>Karsthydrogeologie</td>
<td>2 SWS</td>
<td>Lecture / Practice (</td>
<td>Goldscheider</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 60 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.59 Course: Landfills [T-BGU-100084]

Responsible: Dr.-Ing. Andreas Bieberstein
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-100079 - Environmental Geotechnics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6251913</td>
<td>Landfills</td>
<td>2 SWS</td>
<td>Lecture / Practice</td>
<td>Bieberstein</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.60 Course: Mass Fluxes in River Basins [T-BGU-111061]

Responsible: PD Dr.-Ing. Stephan Fuchs
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-103373 - River Basin Modeling

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>3</th>
<th>Grading scale</th>
<th>pass/fail</th>
<th>Recurrence</th>
<th>Each summer term</th>
<th>Expansion</th>
<th>1 terms</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>6223812</td>
<td>Mass Fluxes in River Basins</td>
<td>2 SWS</td>
<td>Lecture / 🕹️</td>
<td>Fuchs, Morling</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🕹️ Blended (On-Site/Online), ⚰️ On-Site, ✗ Cancelled

Competence Certificate

working on exercises: report, appr. 5 pages, and presentation, appr. 10 min.

Prerequisites

none

Recommendation

none

Annotation

none
5.61 Course: Master's Thesis [T-BGU-110134]

Responsible: Studiendekan:in der KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-104995 - Module Master's Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>30</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

duration appr. 6 months

presentation within one month after submission of the thesis

Prerequisites
defined for the module Master Thesis

Final Thesis

This course represents a final thesis. The following periods have been supplied:

- **Submission deadline:** 6 months
- **Maximum extension period:** 3 months
- **Correction period:** 8 weeks

This thesis requires confirmation by the examination office.

Recommendation

see module

Annotation

Information about the procedure regarding admission and registration of the Master Thesis see chap. 1.2.5.
5.62 Course: Membrane Technologies in Water Treatment [T-CIWVT-113236]

Responsible: Prof. Dr. Harald Horn
Dr.-Ing. Florencia Saravia

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105380 - Membrane Technologies in Water Treatment

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2233010</td>
<td>Membrane Technologies in Water Treatment</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Horn, Saravia</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2233011</td>
<td>Membrane Technologies in Water Treatment - Exercises</td>
<td>1</td>
<td>Practice / 🧩</td>
<td>Horn, Saravia, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
The Examination Prerequisite 'Excercises: Membrane Technologies' (T-CIWVT-113235) has to be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-CIWVT-113235 - Excercises: Membrane Technologies must have been passed.

Recommendation
none

Annotation
none
5.63 Course: Methods of Remote Sensing, Prerequisite [T-BGU-101759]

Responsible: Dr.-Ing. Uwe Weidner
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-103442 - Remote Sensing and Positioning

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week Term</th>
<th>Event Code</th>
<th>Event Description</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6048101</td>
<td>Methods of Remote Sensing, Lecture</td>
<td>1</td>
<td>Lecture / 🔴</td>
<td>Weidner</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>6048102</td>
<td>Methods of Remote Sensing, Exercises</td>
<td>1</td>
<td>Practice / 🔴</td>
<td>Weidner</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🏨 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate
successfully completed exercises

Prerequisites
none

Recommendation
none

Annotation
none
5.64 Course: Microbiology for Engineers [T-CIWVT-106834]

Responsible: Prof. Dr. Thomas Schwartz

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103436 - Applied Microbiology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2233840 | Microbiology for Engineers | 2 SWS | Lecture / Schwartz |

Legend: 🖥 Online, Blended (On-Site/Online), 🗽 On-Site, ☓ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
Course: Modeling of Turbulent Flows - RANS and LES [T-BGU-110842]

Responsible: Prof. Dr.-Ing. Markus Uhlmann

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-105362 - Modeling of Turbulent Flows - RANS and LES

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 6221911 | Modelling of Turbulent Flows - RANS and LES | 4 SWS | Lecture / Practice (/ | Uhlmann |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 45 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.66 Course: Modeling of Water and Environmental Systems [T-BGU-106757]

Responsible: Dr. Jan Wienhöfer
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-103374 - Modeling of Water and Environmental Systems

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>3</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Type
Completed coursework
Credits
3
Grading scale
pass/fail
Recurrence
Each winter term
Version
1

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗂 On-Site, ☒ Cancelled

Competence Certificate
online test (multiple choice test with knowledge and comprehension questions about the contents of the lecture series)

Prerequisites
one

Recommendation
one

Annotation
one
5.67 Course: Modeling Wastewater Treatment Processes [T-BGU-112371]

Responsible: Dr.-Ing. Mohammad Ebrahim Azari Najaf Abad

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-106113 - Modeling Wastewater Treatment Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 6223816 | Modelling Wastewater Treatment Processes | 4 SWS | Lecture / Practice (/ | Azari Najaf Abad |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⚑ On-Site, ⌽ Cancelled

Competence Certificate

written report, appr. 10 pages, and presentation, appr. 10 min.

Prerequisites

none

Recommendation

none

Annotation

The number of participants in the course is limited to 20 persons. The registration is made via ILIAS. The places are allocated considering the progress in the students' studies, with priority to students from Water Science and Engineering, then Civil Engineering, Chemical and Process Engineering, Geocology and further study programs.
5 COURSES

Course: Numerical Flow Modeling in Hydraulic Engineering [T-BGU-106776]

5.68 Course: Numerical Flow Modeling in Hydraulic Engineering [T-BGU-106776]

Responsible: Dr.-Ing. Peter Oberle
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-103390 - Numerical Flow Modeling in Hydraulic Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>4 SWS</td>
<td>Lecture / Practice (/ Online)</td>
<td>Oberle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 📚 On-Site, ❌ Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
Course: Numerical Fluid Mechanics [T-BGU-106758]

Responsible: Prof. Dr.-Ing. Markus Uhlmann

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103375 - Numerical Fluid Mechanics

Type
- Written examination

Credits
- 6

Grading scale
- Grade to a third

Recurrence
- Each term

Version
- 2

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>6221702</th>
<th>Numerical Fluid Mechanics I</th>
<th>4 SWS</th>
<th>Lecture / Practice</th>
<th>Uhlmann</th>
</tr>
</thead>
</table>

Legend: 🚫 Online, 🗻 Blended (On-Site/Online), 🗼 On-Site, ✗ Cancelled

Competence Certificate
- written exam, 90 min.

Prerequisites
- none

Recommendation
- none

Annotation
- none
5.70 Course: Numerical Fluid Mechanics II [T-BGU-106768]

Responsible: Prof. Dr.-Ing. Markus Uhlmann

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103384 - Advanced Computational Fluid Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 6221809 | Numerical Fluid Mechanics II | 2 SWS | Lecture / Practice (/) | Uhlmann |

Competence Certificate

oral exam, appr. 30 min.

Prerequisites

module 'Numerical Fluid Mechanics (AF501)' must be completed

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-BGU-103375 - Numerical Fluid Mechanics must have been passed.

Recommendation

none

Annotation

none
5.71 Course: Numerical Groundwater Modeling [T-BGU-100625]

Responsible: Dr. Ulf Mohrlok
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-100340 - Groundwater Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Event Code</th>
<th>Title</th>
<th>Hours</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6221901</td>
<td>Numerical Groundwater Modeling</td>
<td>2 SWS</td>
<td>Project (P / 🗣)</td>
<td>Mohrlok</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☐ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
project report, appr. 15 pages

Prerequisites
none

Recommendation
none

Annotation
none
5.72 Course: Numerical Mathematics for Students of Computer Science [T-MATH-102242]

Responsible: Prof. Dr. Andreas Rieder
Dr. Daniel Weiβ
Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of: M-MATH-103404 - Numerical Mathematics for Students of Computer Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>0187400</th>
<th>Numerische Mathematik für die Fachrichtungen Informatik und Ingenieurwesen</th>
<th>2 SWS</th>
<th>Lecture</th>
<th>Weiβ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>0187500</td>
<td>Übungen zu 0187400</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Weiβ</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 120 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.73 Course: Oral Exam - Supplementary Studies on Culture and Society [T-ZAK-112659]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
An oral examination according to § 7 section 6 of approx. 45 minutes on the contents of two courses from In-depth Module.

Prerequisites
Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.
5.74 Course: Oral Exam - Supplementary Studies on Sustainable Development [T-ZAK-112351]

<table>
<thead>
<tr>
<th>Organisation:</th>
<th>Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Oral examination</td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
An oral examination according to § 7 section 6 of approx. 45 minutes on the contents of two courses from Elective Module.

Prerequisites
A requirement for the Supplementary Course: Oral examination is the successful completion of the modules Basics Module and Specialisation Module and the required electives of Elective Module.
5.75 Course: Organic Trace Analysis of Aqueous Samples [T-CIWVT-106836]

Responsible: Dr. Gerald Brenner-Weiß
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103437 - Instrumental Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2233830</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written report on the analyses of laboratory data, maximum 5 pages

Prerequisites
none

Recommendation
none

Annotation
none
Course: Parallel Programming Techniques for Engineering [T-BGU-106769]

Responsible: Prof. Dr.-Ing. Markus Uhlmann

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103384 - Advanced Computational Fluid Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 6221807 | Parallel Programming Techniques for Engineering Problems | 2 SWS | Lecture / Practice | Uhlmann |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
module 'Numerical Fluid Mechanics (AF501)' must be completed

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-BGU-103375 - Numerical Fluid Mechanics must have been passed.

Recommendation
none

Annotation
none
5.77 Course: Practical Course in Water Technology [T-CIWVT-106840]

Responsible: Dr. Gudrun Abbt-Braun
Dr. Andrea Hille-Reichel
Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103440 - Practical Course in Water Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2233032</td>
<td>Practical Course: Water Quality and Water Assessment</td>
<td>2</td>
<td>Horn, Abbt-Braun</td>
</tr>
</tbody>
</table>

Competence Certificate

The grade of the examination of other type is determined as follows:

In total 150 points can be achieved:

- maximum 60 points for 6 experiments incl. entrance test and report (10 points each),
- maximum 15 points for the presentation about one experiment,
- maximum 75 points for the final certificate.

At least 80 points must be achieved in order to pass the examination of other type.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-CIWVT-103407 - Water Technology must have been started.
2. The course T-CIWVT-110866 - Excursions: Water Supply must have been passed.

Recommendation

none

Annotation

none
5.78 Course: Practice Module [T-ZAK-112660]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Internship (3 ECT)
Report within the framework of the practical training (Length approx. 18,000 characters (incl. spaces) (1 ECT)

Prerequisites
none

Annotation
Knowledge from the Basic Module and the Elective Module is helpful.
5.79 Course: Prerequisite Protection and Use of Riverine Systems [T-BGU-106790]

Responsible: Dr. rer. nat. Charlotte Kämpf
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-103401 - Protection and Use of Riverine Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>6220801</th>
<th>Protection and Use of Riverine Systems</th>
<th>2 SWS</th>
<th>Lecture / 📚</th>
<th>Kämpf, Rodrigues Pereira da Franca, Kron</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗞️ On-Site, ✗ Cancelled

Competence Certificate
- literature annotation, appr. 150 words,
- short presentation, appr. 10 min., and
- excursion report, appr. 2 pages

Prerequisites
- none

Recommendation
- none

Annotation
- none
5.80 Course: Presentation 'Urban Water Infrastructure and Management' [T-BGU-112369]

Responsible: Dr.-Ing. Mohammad Ebrahim Azari Najaf Abad
PD Dr.-Ing. Stephan Fuchs

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103358 - Urban Water Infrastructure and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecturer</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6223701</td>
<td>Urban Water Infrastructure and Management</td>
<td>4 SWS</td>
<td>Lecture / Practice (/ Fuchs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⬠ Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
Presentation, appr. 15 min.

Prerequisites
None

Recommendation
None

Annotation
None
5.81 Course: Probability and Statistics [T-MATH-106784]

Responsible: PD Dr. Bernhard Klar
Organisation: KIT Department of Mathematics
Part of: M-MATH-103395 - Probability and Statistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 0188100</td>
<td>Probability and Statistics</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Klar</td>
</tr>
<tr>
<td>ST 2024 0188110</td>
<td>Tutorial for 0188100</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Klar</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.82 Course: Project Report Water Distribution Systems [T-BGU-108485]

Responsible: Dr.-Ing. Peter Oberle

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-104100 - Water Distribution Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 6222905</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Oberle</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
project report, appr. 15 pages, and presentation, appr. 15 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.83 Course: Project Studies in Water Resources Management [T-BGU-106783]

Responsible: Dr.-Ing. Frank Seidel

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103394 - Project Studies in Water Resources Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6222901</td>
<td>Projektstudium: Wasserwirtschaftliche Planungen</td>
<td>4 SWS</td>
<td>Lecture / Practice (</td>
<td>Seidel</td>
</tr>
</tbody>
</table>

Competence Certificate

project work: term paper, appr. 15 pages, with presentation, appr. 15 min.

Prerequisites

none

Recommendation

none

Annotation

none
5.84 Course: Protection and Use of Riverine Systems [T-BGU-106791]

Responsible: Dr. rer. nat. Charlotte Kämpf

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103401 - Protection and Use of Riverine Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>6220801</td>
<td>Protection and Use of Riverine Systems</td>
<td>2 SWS</td>
<td>Lecture / 🧩 Kampf, Rodrigues Pereira da Franca, Kron</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🌆 On-Site, ❌ Cancelled

Competence Certificate
about a topic selected by oneself out of the field water management or international nature conservation:
- presentation, appr. 15-20 min., and
- manuscript, appr. 2500 words

Prerequisites
The accomplishment 'Prerequisite Protection and Use of Riverine Systems' (T-BGU-106790) has to be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-106790 - Prerequisite Protection and Use of Riverine Systems must have been passed.

Recommendation
none

Annotation
none
5 COURSES

5.85 Course: Remote Sensing and Positioning [T-BGU-106843]

Responsible: Dr.-Ing. Michael Mayer
Dr.-Ing. Hael Sumaya
Dr.-Ing. Uwe Weidner

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103442 - Remote Sensing and Positioning

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each term
Version: 3

Events

<table>
<thead>
<tr>
<th>Week</th>
<th>Event Code</th>
<th>Event Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6048101</td>
<td>Methods of Remote Sensing, Lecture</td>
<td>1</td>
<td>Lecture</td>
<td>Weidner</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>6048102</td>
<td>Methods of Remote Sensing, Exercises</td>
<td>1</td>
<td>Practice</td>
<td>Weidner</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗽 On-Site, 🗿 Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
The examination prerequisites Fundamentals of Environmental Geodesy Part B (T-BGU-109329) and Methods of Remote Sensing, Prerequisite (T-BGU-101759) has to be passed both.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-101759 - Methods of Remote Sensing, Prerequisite must have been passed.
2. The course T-BGU-109329 - Fundamentals of Environmental Geodesy Part B must have been passed.

Recommendation
none

Annotation
none
5.86 Course: River and Floodplain Ecology [T-BGU-102997]

Responsible: Prof. Dr. Florian Wittmann
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-103391 - Sustainable Management of rivers and Floodplains

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 6111231 | River and Floodplain Ecology | 2 SWS | Lecture / Wittmann |

Competence Certificate

- not graded written test with 60 min.

Prerequisites

- None

Recommendation

- None

Annotation

- None
5.87 Course: River Basin Modeling [T-BGU-106603]

Responsible: PD Dr.-Ing. Stephan Fuchs
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-103373 - River Basin Modeling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 6223904 Modelling Mass Fluxes in River Basins</td>
<td>2 SWS</td>
<td>Lecture / Practice (/)</td>
<td>Fuchs</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗓 On-Site, ✗ Cancelled

Competence Certificate

- Project report, appr. 10 pages, and presentation, appr. 15 min.

Prerequisites

The not graded accomplishment 'Mass Fluxes in River Basins' has to be passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-BGU-111061 - Mass Fluxes in River Basins must have been passed.

Recommendation

- none

Annotation

- none
5.88 Course: River Processes [T-BGU-111930]

Responsible: Prof. Dr. Mario Jorge Rodrigues Pereira da Franca
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-105927 - River Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 6222805 Landscape and River Morphology</td>
<td>2 SWS</td>
<td>Lecture / Practice</td>
<td>Rodrigues Pereira da Franca</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ST 2024 6222807 Transport Processes in Rivers</td>
<td>2 SWS</td>
<td>Lecture / Practice</td>
<td>Rodrigues Pereira da Franca</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), ⬅️ On-Site, ✗ Cancelled

Competence Certificate
assignment on Landscape and River Morphology, max. 10 pages; experimental work and analysis (research-based teaching) on Transport Processes in Rivers, appr. 10 pages; final colloquium, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.89 Course: Seminar Paper 'Waterway Engineering' [T-BGU-106779]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Dr.-Ing. Andreas Kron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Civil Engineering, Geo and Environmental Sciences</td>
</tr>
<tr>
<td>Part of</td>
<td>M-BGU-103392 - Waterway Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>1</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>6222803</td>
<td>Waterway Engineering</td>
<td>4 SWS</td>
<td>Lecture / Practice (/) Kron</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

seminar paper, appr. 15 pages

Prerequisites

none

Recommendation

none

Annotation

none
5.90 Course: Specialisation Module - Self Assignment BeNe [T-ZAK-112346]

Responsible: Christine Myglas
Organisation: Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The monitoring occurs in the form of several supplementary courses, which usually comprise a presentation of the (group) project, a written elaboration of the (group) project as well as an individual term paper, if necessary with appendices (examination performances of other kind according to statutes § 5 section 3 No. 3 or § 7 section 7).
The presentation is usually with the accompanying practice partners, as well as the written paper.

Prerequisites
Active participation in all three mandatory components.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation
Knowledge from ‘Basic Module ’ and ‘Elective Module ’ is helpful.
5.91 Course: Stormwater Management [T-BGU-112370]

Responsible: PD Dr.-Ing. Stephan Fuchs
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-106112 - Stormwater Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>6223815</th>
<th>Stormwater Management</th>
<th>4 SWS</th>
<th>Lecture / Practice (/)</th>
<th>Azari Najaf Abad, Fuchs</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🏗 Blended (On-Site/Online), 🚶 On-Site, ✗ Cancelled

Competence Certificate

written report, appr. 10 pages, and presentation, appr. 10 min.

Prerequisites

none

Recommendation

none

Annotation

The attendance of the site visits and the lab work is mandatory.

The number of participants in the course is limited to 20 persons. The registration is made via ILIAS. The places are allocated considering the progress in the students' studies, with priority to students from Water Science and Engineering, then Civil Engineering, Geoecology and further study programs.
5.92 Course: Study Project [T-BGU-106839]

Responsible: Dr.-Ing. Michele Trevisson
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-103439 - Study Project

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>15</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
report, appr. 30 pages, and presentation, appr. 20 min.

Prerequisites
none

Recommendation
The knowledge and technical and interdisciplinary skills needed to work on the selected topic and to prepare the 'Study Project' should have been acquired.

Annotation
none
5 COURSES

Course: Thermal Use of Groundwater [T-BGU-106803]

Responsible: Prof. Dr. Philipp Blum
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-103408 - Thermal Use of Groundwater

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6339115</td>
<td>Thermal Use of Groundwater</td>
<td>2 SWS</td>
<td>Lecture / Practice (Blum)</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 15 min.

Prerequisites
none

Recommendation
knowledge of programming with Matlab; otherwise, it is strongly recommended to attend the course 'Introduction to Matlab' (6224907)

Annotation
none
Course: Transport and Transformation of Contaminants in Hydrological Systems [T-BGU-106598]

Responsible: Prof. Dr.-Ing. Erwin Zehe
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-103872 - Subsurface Flow and Contaminant Transport

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events
ST 2024 6224803
Transport and Transformation of Contaminants in Hydrological Systems
4 SWS Lecture / Practice (/) Zehe, Wienhöfer

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗿 On-Site, ☑ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.95 Course: Turbulent Diffusion [T-PHYS-111427]

Responsible: Prof. Dr. Corinna Hoose
Dr. Gholamali Hoshyaripour

Organisation: KIT Department of Physics

Part of: M-PHYS-105776 - Applied Meteorology: Turbulent Diffusion

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Exercise</th>
<th>Type/Lecture</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbulent Diffusion 2 SWS Lecture</td>
<td>4052081</td>
<td>Turbulent Diffusion</td>
<td>Lecture / 🗣</td>
<td>Hoshyaripour, Hoose</td>
</tr>
<tr>
<td>Exercises to Turbulent Diffusion 1 SWS Practice</td>
<td>4052082</td>
<td>Exercises to Turbulent Diffusion</td>
<td>Practice / 🗣</td>
<td>Hoshyaripour, Hoose, Chopra</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

There are 7 exercises with 100 points in total.

To pass the prerequisite students must:

- Obtain at least 50 points from exercises.
- Present and explain at least one of the ICON-ART exercises in the class.

Prerequisites

None

Recommendation

None

Annotation

None
5.96 Course: Urban Water Infrastructure and Management [T-BGU-106600]

Responsibility: Dr.-Ing. Mohammad Ebrahim Azari Najaf Abad
PD Dr.-Ing. Stephan Fuchs

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103358 - Urban Water Infrastructure and Management

Type: Written examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each term
Version: 3

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧬 Blended (On-Site/Online), ☑ On-Site, ❌ Cancelled

Competence Certificate
written exam, 60 min.

Prerequisites
The not graded accomplishment Presentation 'Urban Water Infrastructure and Management' (T-BGU-112369) has to be passend.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-112369 - Presentation 'Urban Water Infrastructure and Management' must have been passed.

Recommendation
none

Annotation
none
5.97 Course: Wastewater Treatment Technologies [T-BGU-109948]

Responsible: Dr.-Ing. Mohammad Ebrahim Azari Najaf Abad
PD Dr.-Ing. Stephan Fuchs

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-104917 - Wastewater Treatment Technologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 6223801 Wastewater Treatment Technologies</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Fuchs, Azari Najaf Abad</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 💼 Blended (On-Site/Online), 🗣 On-Site, ☠ Cancelled

Competence Certificate
written exam, 60 min.

Prerequisites
none

Recommendation
none

Annotation
The number of participants in the course is limited to 30 persons. The registration is to be made via ILIAS. The places are allocated considering the progress in the students' studies, with priority to students from Water Science and Engineering, then Civil Engineering, Chemical and Process Engineering, Geoecology and further study programs.

Organisation: KIT Department of Chemical and Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2233130 | Circular Economy Water Energy Environment: Research Proposal Preparation | 4 SWS | Lecture/🗣 | Schäfer |

Legend: 🖥 Online, ⚠ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The Learning control is an examination of another type:
Research proposal of 10 pages and an oral presentation of 10 minutes (individual work). The grade will be a composite of the proposal (submission in week 13 before class) and oral & poster presentation (all day workshop with researcher participation).

Prerequisites
None

Recommendation
none

Annotation
none
5.99 Course: Water and Energy Cycles [T-BGU-106596]

Responsible: Prof. Dr.-Ing. Erwin Zehe

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103360 - Water and Energy Cycles

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6224702</td>
<td>Water and Energy Cycles in Hydrological Systems: Processes, Predictions and Management</td>
<td>4</td>
<td>SWS</td>
<td>Zehe</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 📦 Blended (On-Site/Online), 🔜 On-Site, ✗ Cancelled

Competence Certificate

Substitution of at least 50% of the weekly exercises plus a written term paper on a given topic, approx. 10 to 15 pages

Prerequisites

none

Recommendation

none

Annotation

none
5 COURSES

5.100 Course: Water Distribution Systems [T-BGU-108486]

Responsible: Dr.-Ing. Peter Oberle
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-104100 - Water Distribution Systems

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 2

Events

| WT 23/24 | Lecture / Practice (/) | Course: Water Distribution Systems | 4 SWS |
| 6222905 | Oberle |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗂 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
The accomplishment 'Project Report Water Distribution Systems' (T-BGU-108485) has to be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-108485 - Project Report Water Distribution Systems must have been passed.

Recommendation
none

Annotation
none
5.101 Course: Water Technology [T-CIWVT-106802]

Responsible: Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103407 - Water Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
<th>Hours</th>
<th>Event Name</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Water Technology</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Oral</td>
<td>2</td>
<td>Horn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exercises to Water Technology</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Oral</td>
<td>1</td>
<td>Horn, und Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔊 On-Site, ❌ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
5.102 Course: Waterway Engineering [T-BGU-106780]

Responsible: Dr.-Ing. Andreas Kron

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103392 - Waterway Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Waterway Engineering</th>
<th>4 SWS</th>
<th>Lecture / Practice (/</th>
<th>Kron</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>6222803</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗿 On-Site, x Cancelled

Competence Certificate

oral exam, appr. 20 min.

Prerequisites
The accomplishment 'Seminar Paper Waterway Engineering' (T-BGU-106779) has to be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-106779 - Seminar Paper 'Waterway Engineering' must have been passed.

Recommendation

none

Annotation

none
5.103 Course: Wetlands [T-BGU-112845]

Responsible: Dr. rer. nat. Christian Damm
Prof. Dr. Florian Wittmann

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103391 - Sustainable Management of rivers and Floodplains

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 6111234</td>
<td>2 SWS</td>
<td>Seminar / Damm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
presentation, appr. 20-30 min.

Prerequisites
none

Recommendation
none

Annotation
none
<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Organisation: University

Part of: M-BGU-103466 - Language Skills 1 (2 CP)
5.105 Course: Wildcard 2 Language Skills [T-BGU-106885]

<table>
<thead>
<tr>
<th>Organisation:</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of:</td>
<td>M-BGU-103466 - Language Skills 1 (2 CP)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>
Example Curricula

This section contains example curricula for each of the four profiles. Please note that these are only one out of many other possible combinations. The students can ask the mentors for advice on the selection of modules.

Abbreviations

Subjects
AF Advanced Fundamentals
CC Cross-Cutting Methods & Competencies
P Profile Studies
PA Profile A
PB Profile B
PC Profile C
PD Profile D
P/SM Profile Studies/Supplementary Modules
SP Study Project
MT Master's Thesis

General Information
CP credit points
HPW class hours per week
LC learning control
G German
E English
G/E teaching language: German/documents: English

Type of Course
L lecture
E exercise
S seminar
P practical course
F field trip

Learning Controls
wE written examination
oE oral examination
EoT examination of other type
ngA not graded accomplishment
Example Curriculum PA - Water Technologies & Urban Water Cycle

1st Semester (winter semester)

Hours per week: 18; credit points: 31; exams: 5 (not graded accomplishments)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Module</th>
<th>Title</th>
<th>CP</th>
<th>HPW</th>
<th>Type</th>
<th>LC</th>
<th>G/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>AF101</td>
<td>Modeling of Water and Environmental Systems</td>
<td>3</td>
<td>2</td>
<td>L</td>
<td>ngA</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>AF201</td>
<td>Fundamentals of Water Quality</td>
<td>6</td>
<td>3</td>
<td>L/E</td>
<td>wE</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>AF301</td>
<td>Urban Water Infrastructure and Management</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>wE + ngA</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>AF701</td>
<td>Water and Energy Cycles</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>EoT</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PA982</td>
<td>Applied Microbiology</td>
<td>4</td>
<td>2</td>
<td>L</td>
<td>oE</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>PA221</td>
<td>Water Technology</td>
<td>6</td>
<td>3</td>
<td>L/E</td>
<td>oE</td>
<td>E</td>
</tr>
</tbody>
</table>

2nd Semester (summer semester)

Hours per week: 16; credit points: 28; exams: 5

<table>
<thead>
<tr>
<th>Subject</th>
<th>Module</th>
<th>Title</th>
<th>CP</th>
<th>HPW</th>
<th>Type</th>
<th>LC</th>
<th>G/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>AF801</td>
<td>Hydrogeology</td>
<td>6</td>
<td>3</td>
<td>L/E</td>
<td>wE</td>
<td>E</td>
</tr>
<tr>
<td>CC</td>
<td>CC921</td>
<td>Instrumental Analysis</td>
<td>6</td>
<td>4</td>
<td>L/P</td>
<td>oE + ngA</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PA222</td>
<td>Membrane Technologies in Water Treatment</td>
<td>6</td>
<td>3</td>
<td>L/E</td>
<td>wE + ngA</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>PA323</td>
<td>Modeling Wastewater Treatment Processes</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>EoT</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>PA982</td>
<td>Applied Microbiology</td>
<td>4</td>
<td>2</td>
<td>L</td>
<td>oE</td>
<td>E</td>
</tr>
</tbody>
</table>

3rd Semester (winter semester)

Hours per week: 10 + Study Project (3 months); credit points: 31; exams: 3

<table>
<thead>
<tr>
<th>Subject</th>
<th>Module</th>
<th>Title</th>
<th>CP</th>
<th>HPW</th>
<th>Type</th>
<th>LC</th>
<th>G/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC949</td>
<td>Language Skills</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>ngA</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PA222</td>
<td>Practical Course in Water Technology</td>
<td>4</td>
<td>2</td>
<td>L/P</td>
<td>EoT+ ngA</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>PA621</td>
<td>Water Distribution Systems</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>oE + ngA</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>SP</td>
<td>Study Project</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>EoT</td>
<td>E</td>
</tr>
</tbody>
</table>

4th Semester (summer semester)

Master’s thesis (6 months); credit points: 30; exams: 1
Example Curriculum PB - Fluid Mechanics & Hydraulic Engineering

1st Semester (summer semester)

Hours per week: 20; credit points: 30; exams: 5 (ungraded LC are not counted)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Module</th>
<th>Title</th>
<th>CP</th>
<th>HPW</th>
<th>Type</th>
<th>LC</th>
<th>G/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>AF401</td>
<td>Advanced Fluid Mechanics</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>wE</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>AF601</td>
<td>Hydraulic Engineering</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>wE + ngA</td>
<td>E</td>
</tr>
<tr>
<td>CC</td>
<td>CC471</td>
<td>Experiments in Fluid Mechanics</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>EoT</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PB523</td>
<td>Fluid Mechanics of Turbulent Flows</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>oE</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>PB634</td>
<td>River Processes</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>EoT</td>
<td>E</td>
</tr>
</tbody>
</table>

2nd Semester (winter semester)

Hours per week: 20; credit points: 30; exams: 5

<table>
<thead>
<tr>
<th>Subject</th>
<th>Module</th>
<th>Title</th>
<th>CP</th>
<th>HPW</th>
<th>Type</th>
<th>LC</th>
<th>G/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>AF101</td>
<td>Modeling of Water and Environmental Systems</td>
<td>3</td>
<td>2</td>
<td>L</td>
<td>ngA</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>AF701</td>
<td>Water and Energy Cycles</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>EoT</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>AF501</td>
<td>Numerical Fluid Mechanics</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>wE</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PB524</td>
<td>Modeling of Turbulent Flows - RANS and LES</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>oE</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>PB421</td>
<td>Environmental Fluid Mechanics</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>wE</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>PB631</td>
<td>Hydraulic Structures</td>
<td>3</td>
<td>2</td>
<td>L/E</td>
<td>wE</td>
<td>E</td>
</tr>
</tbody>
</table>

3rd Semester (summer semester)

Hours per week: 10 + Study Project (3 months); credit points: 30; exams: 4

<table>
<thead>
<tr>
<th>Subject</th>
<th>Module</th>
<th>Title</th>
<th>CP</th>
<th>HPW</th>
<th>Type</th>
<th>LC</th>
<th>G/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>PB631</td>
<td>Hydraulic Structures</td>
<td>3</td>
<td>2</td>
<td>L/E</td>
<td>wE</td>
<td>E</td>
</tr>
<tr>
<td>P/SM</td>
<td>PC722</td>
<td>Integrated Design Project in Water Resources Management</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>EoT</td>
<td>E</td>
</tr>
<tr>
<td>CC</td>
<td>CC371</td>
<td>Freshwater Ecology</td>
<td>6</td>
<td>4</td>
<td>L/S/E</td>
<td>EoT</td>
<td>E</td>
</tr>
<tr>
<td>SP</td>
<td>SP111</td>
<td>Study Project</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>EoT</td>
<td>E</td>
</tr>
</tbody>
</table>

4th Semester (winter semester)

Master’s thesis (6 months); credit points: 30; exams: 1
Example Curriculum PC - Environmental System Dynamics & Management

1st Semester (winter semester)

Hours per week: 19; credit points: 30; exams: 4 (ungraded LC are not counted)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Module</th>
<th>Title</th>
<th>CP</th>
<th>HPW</th>
<th>Type</th>
<th>LC</th>
<th>G/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>AF101</td>
<td>Modeling of Water and Environmental Systems</td>
<td>3</td>
<td>2</td>
<td>L</td>
<td>ngA</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>AF201</td>
<td>Fundamentals of Water Quality</td>
<td>6</td>
<td>3</td>
<td>L/E</td>
<td>wE</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>AF701</td>
<td>Water and Energy Cycles</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>EoT</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>AF301</td>
<td>Urban Water Infrastructure and Management</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>wE +</td>
<td>ngA</td>
</tr>
<tr>
<td>CC</td>
<td>CC774</td>
<td>Introduction to Environmental Data Analysis and Statistical Learning</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>wE +</td>
<td>ngA</td>
</tr>
<tr>
<td></td>
<td>CC772</td>
<td>Introduction to Matlab</td>
<td>3</td>
<td>2</td>
<td>L/E</td>
<td>ngA</td>
<td>E</td>
</tr>
</tbody>
</table>

2nd Semester (summer semester)

Hours per week: 21; credit points: 33; exams: 6

<table>
<thead>
<tr>
<th>Subject</th>
<th>Module</th>
<th>Title</th>
<th>CP</th>
<th>HPW</th>
<th>Type</th>
<th>LC</th>
<th>G/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>AF801</td>
<td>Hydrogeology</td>
<td>6</td>
<td>3</td>
<td>L/E</td>
<td>wE</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PC561</td>
<td>Groundwater Management</td>
<td>3</td>
<td>2</td>
<td>L/E</td>
<td>oE</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>PC725</td>
<td>Subsurface Flow and Contaminant Transport</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>oE</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>PC731</td>
<td>Hydrological Measurements</td>
<td>6</td>
<td>4</td>
<td>L/P</td>
<td>EoT</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>PC722</td>
<td>Integrated Design Project in Water Resources Management</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>EoT</td>
<td>E</td>
</tr>
<tr>
<td>P/SM</td>
<td>CC773</td>
<td>Analysis of Spatial Data</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>oE</td>
<td>E</td>
</tr>
</tbody>
</table>

3rd Semester (winter semester)

Hours per week: 8 + Study Project (3 months); credit points: 27; exams: 3

<table>
<thead>
<tr>
<th>Subject</th>
<th>Module</th>
<th>Title</th>
<th>CP</th>
<th>HPW</th>
<th>Type</th>
<th>LC</th>
<th>G/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC949</td>
<td>Language Skills</td>
<td>3</td>
<td>2</td>
<td>L/E</td>
<td>ngA</td>
<td>G</td>
</tr>
<tr>
<td>P</td>
<td>PC561</td>
<td>Groundwater Management</td>
<td>3</td>
<td>2</td>
<td>E</td>
<td>EoT</td>
<td>E</td>
</tr>
<tr>
<td>P/SM</td>
<td>CC933</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>wE +</td>
<td>ngA</td>
</tr>
<tr>
<td>SP</td>
<td>SP111</td>
<td>Study Project</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>EoT</td>
<td>E</td>
</tr>
</tbody>
</table>

4th Semester (summer semester)

Master’s thesis (6 months); credit points: 30; exams: 1
Example Curriculum PD - Water Resources Engineering

1st Semester (winter semester)

Hours per week: 18; credit points: 30; exams: 4 (ungraded LC are not counted)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Module</th>
<th>Title</th>
<th>CP</th>
<th>HPW</th>
<th>Type</th>
<th>LC</th>
<th>G/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>AF101</td>
<td>Modeling of Water and Environmental Systems</td>
<td>3</td>
<td>2</td>
<td>L</td>
<td>ngA</td>
<td>E</td>
</tr>
<tr>
<td>AF</td>
<td>AF201</td>
<td>Fundamentals of Water Quality</td>
<td>6</td>
<td>3</td>
<td>L/E</td>
<td>wE</td>
<td>E</td>
</tr>
<tr>
<td>AF</td>
<td>AF301</td>
<td>Urban Water Infrastructure and Management</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>wE + ngA</td>
<td>E</td>
</tr>
<tr>
<td>CC</td>
<td>CC772</td>
<td>Introduction to Matlab</td>
<td>3</td>
<td>2</td>
<td>L/E</td>
<td>ngA</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PA221</td>
<td>Water Technology</td>
<td>6</td>
<td>3</td>
<td>L/E</td>
<td>oE</td>
<td>E</td>
</tr>
</tbody>
</table>

2nd Semester (summer semester)

Hours per week: 20; credit points: 30; exams: 5

<table>
<thead>
<tr>
<th>Subject</th>
<th>Module</th>
<th>Title</th>
<th>CP</th>
<th>HPW</th>
<th>Type</th>
<th>LC</th>
<th>G/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>AF601</td>
<td>Hydraulic Engineering</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>wE</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PA323</td>
<td>Modeling Wastewater Treatment Processes</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>EoT</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>PB633</td>
<td>River Processes</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>EoT</td>
<td>E</td>
</tr>
<tr>
<td>PC</td>
<td>PC722</td>
<td>Integrated Design Project in Water Resources Management</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>EoT</td>
<td>E</td>
</tr>
<tr>
<td>CC</td>
<td>CC774</td>
<td>Analysis of Spatial Data</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>oE</td>
<td>E</td>
</tr>
</tbody>
</table>

3rd Semester (winter semester)

Hours per week: 10 + Study Project (3 months); credit points: 30; exams: 4

<table>
<thead>
<tr>
<th>Subject</th>
<th>Module</th>
<th>Title</th>
<th>CP</th>
<th>HPW</th>
<th>Type</th>
<th>LC</th>
<th>G/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>PA621</td>
<td>Water Distribution Systems</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>oE</td>
<td>E</td>
</tr>
<tr>
<td>P/SM</td>
<td>CC774</td>
<td>Introduction to Environmental Data Analysis and Statistical Learning</td>
<td>6</td>
<td>4</td>
<td>L/E</td>
<td>wE + ngA</td>
<td>E</td>
</tr>
<tr>
<td>CC</td>
<td>CC571</td>
<td>Fundamentals of Numerical Algorithms for Engineers</td>
<td>3</td>
<td>2</td>
<td>L</td>
<td>wE</td>
<td>E</td>
</tr>
<tr>
<td>SP</td>
<td>SP111</td>
<td>Study Project</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>EoT</td>
<td>E</td>
</tr>
</tbody>
</table>

4th Semester (summer semester)

Master’s thesis (6 months); credit points: 30; exams: 1